Necroptosis is considered a programmed necrosis that requires receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and pore-forming mixed lineage kinase domain-like protein (MLKL) to trigger a regulated cell membrane lysis. Membrane rupture in necroptosis has been shown to fuel innate immune response due to release of damage-associated molecular patterns (DAMPs). Recently published studies indicate that mature erythrocytes can undergo necroptosis as well. In this review, we provide an outline of multiple cell death modes occurring in erythrocytes, discuss possible immunological aspects of diverse erythrocyte cell deaths, summarize available evidence related to the ability of erythrocytes to undergo necroptosis, outline key involved molecular mechanisms, and discuss the potential implication of erythrocyte necroptosis in the physiology and pathophysiology. Furthermore, we aim to highlight the interplay between necroptosis and eryptosis signaling in erythrocytes, emphasizing specific characteristics of these pathways distinct from their counterparts in nucleated cells. Thus, our review provides a comprehensive summary of the current knowledge of necroptosis in erythrocytes. To reflect critical differences between necroptosis of nucleated cells and necroptosis of erythrocytes, we suggest a term erythronecroptosis for necroptosis of enucleated cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-024-04948-8 | DOI Listing |
Clin Breast Cancer
December 2024
Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh, India. Electronic address:
Breast cancer (BC) now holds the top position as the primary reason of cancer-related fatalities worldwide, overtaking lung cancer. BC is classified into diverse categories depending on histopathological type, hormone receptor status, and gene expression profile, with ongoing evolution in their classifications. Cancer initiates and advances when there is a disruption in cell death pathways.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Breast, Foshan Fosun Chancheng Hospital, Foshan, Guangdong Province, China.
Growing evidence has demonstrated the association between necroptosis and tumorigenesis and immunotherapy. However, the influence of overall necroptosis related genes on prognosis and immune microenvironment of breast cancer is still unclear. In this study, We systematically analyzed the necroptosis related gene patterns and tumor microenvironment characteristics of 1294 breast cancer patients by clustering the gene expression of 22 necroptosis related genes.
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.
Background: Oncolytic viruses (OVs) are increasingly recognized as promising tools for cancer therapy, as they selectively infect and destroy tumor cells while leaving healthy cells unharmed. Despite considerable progress, the limited therapeutic efficacy of OV-based virotherapy continues to be a significant challenge in cancer treatment.
Methods: The SMAC/DIABLO gene was inserted into the genome of vesicular stomatitis virus (VSV) to generate VSV-S.
Chem Biol Interact
January 2025
Department of Cardiology, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang 310007, China; Zhejiang Key Laboratory of Integrative Chinese and Western Medicine for Diagnosis and Treatment of Circulatory Diseases, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang 310007, China; Zhejiang Engineering Research Center for Precise Diagnosis and Innovative Traditional Chinese Medicine for Cardiovascular Diseases, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang 310007, China. Electronic address:
As a fundamental component of antitumor therapy, chemotherapy-induced cardiotoxicity (CIC) has emerged as a leading cause of long-term mortality in patients with malignant tumors. Unfortunately, there are currently no effective therapeutic preventive or treatment strategies, and the underlying pathophysiological mechanisms of CIC remain inadequately understood. A growing number of studies have shown that different mechanisms of cell death, such as apoptosis, pyroptosis, and necroptosis, are essential for facilitating the cardiotoxic effects of chemotherapy.
View Article and Find Full Text PDFRespir Investig
January 2025
Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, China. Electronic address:
Background: The mechanism underlying necroptosis in pulmonary vessel endothelial cells (PVECs) resulting from long non-coding RNA (lncRNA)-induced alternative splicing (AS) of target genes in acute lung injury (ALI) remains unclear.
Methods: Lipopolysaccharide (LPS)-induced expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and lncRNAs was analyzed via RT-PCR in PVECs. Full-transcriptome sequencing was used to detect AS-related mRNAs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!