Background: Gastric cancer is one of the major public health problems worldwide. Circadian rhythm disturbances driven by circadian clock genes play a role in the development of cancer. However, whether circadian clock genes can serve as potential therapeutic targets and prognostic biomarkers for gastric cancer remains elusive.
Methods: In this study, we comprehensively analyzed the potential relationship between circadian clock genes and gastric cancer using online bioinformatics databases such as GEPIA, cBioPortal, STRING, GeneMANIA, Metascape, TIMER, TRRUST, and GEDS.
Results: Biological clock genes are expressed differently in human tumors. Compared with normal tissues, only PER1, CLOCK, and TIMELESS expression differences were statistically significant in gastric cancer (p < 0.05). PER1 (p = 0.0169) and CLOCK (p = 0.0414) were associated with gastric cancer pathological stage (p < 0.05). Gastric cancer patients with high expression of PER1 (p = 0.0028) and NR1D1 (p = 0.016) had longer overall survival, while those with high expression of PER1 (p = 0.042) and NR1D1 (p = 0.016) had longer disease-free survival. The main function of the biological clock gene is related to the circadian rhythms and melatonin metabolism and effects. CLOCK, NPAS2, and KAT2B were key transcription factors for circadian clock genes. In addition, we also found important correlations between circadian clock genes and various immune cells in the gastric cancer microenvironment.
Conclusions: This study may establish a new gastric cancer prognostic indicator based on the biological clock gene and develop new drugs for the treatment of gastric cancer using biological clock gene targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12029-024-01028-4 | DOI Listing |
Sci Rep
December 2024
Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
A circadian clock is reconstituted in vitro by incubating three proteins, KaiA, KaiB, and KaiC from the non-nitrogen-fixing cyanobacterium Synechococcus elongatus PCC 7942 in the presence of ATP. Leptolyngbya boryana is a filamentous cyanobacterium that grows diazotrophically under microoxic conditions. Among the aforementioned proteins, KaiC is the main clock oscillator belonging to the RecA ATPase superfamily.
View Article and Find Full Text PDFSci Rep
December 2024
Departments of Animal and Food Sciences, Biological Sciences, Medical and Molecular Sciences, and Microbiology Graduate Program, University of Delaware, Newark, DE, USA.
The transcriptional regulation of gene expression in the latter stages of follicular development in laying hen ovarian follicles is not well understood. Although differentially expressed genes (DEGs) have been identified in pre-recruitment and pre-ovulatory stages, the master regulators driving these DEGs remain unknown. This study addresses this knowledge gap by utilizing Master Regulator Analysis (MRA) combined with the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) for the first time in laying hen research to identify master regulators that are controlling DEGs in pre-recruitment and pre-ovulatory phases.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA.
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues.
View Article and Find Full Text PDFPhotochem Photobiol
December 2024
Graduate School of Informatics, Nagoya University, Nagoya, Japan.
Circadian clocks facilitate organisms' adaptation to the day-night environmental cycle. Some of the component genes of the clocks ("clock genes") respond directly to changes in ambient light, supposedly allowing the clocks to synchronize to and/or oscillate robustly in the environmental cycle. In the dicotyledonous model plant Arabidopsis thaliana, the clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) show transient expression in response to the morning light.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
The circadian clock is crucial in plant immunity and metabolism, yet the coordinating mechanisms remain elusive. In the present study, transcriptome analysis of -infected rice leaves and rhythmic analysis showed reduced amplitudes of circadian and phytochrome genes, impacting immune response, metabolic pathways, and calcium signaling. The amplitudes of pattern-triggered immunity (PTI)-related genes declined, while the rhythmicity of effector-triggered immunity (ETI)-related genes disappeared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!