Genome editing tools based on SpCas9 and FnCpf1 have facilitated strain improvements for natural product production and novel drug discovery in . However, due to high toxicity, their editing requires high DNA transformation efficiency, which is unavailable in most streptomycetes. The transformation efficiency of an all-in-one editing tool based on miniature Cas nuclease AsCas12f1 was significantly higher than those of SpCas9 and FnCpf1 in tested streptomycetes, which is due to its small size and weak DNA cleavage activity. Using this tool, in , we achieved 100% efficiency for single gene or gene cluster deletion and 46.7 and 40% efficiency for simultaneous deletion of two genes and two gene clusters, respectively. AsCas12f1 was successfully extended to SIPI-054 for efficient genome editing, in which SpCas9/FnCpf1 does not work well. Collectively, this work offers a low-toxicity, high-efficiency genome editing tool for streptomycetes, particularly those with low DNA transformation efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c09101DOI Listing

Publication Analysis

Top Keywords

genome editing
16
editing tool
12
transformation efficiency
12
low-toxicity high-efficiency
8
high-efficiency genome
8
tool based
8
based miniature
8
nuclease ascas12f1
8
spcas9 fncpf1
8
dna transformation
8

Similar Publications

Single-Cell Profiling of Lineages and Cell Types in the Vertebrate Brain.

Methods Mol Biol

January 2025

Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

CRISPR-Cas tools have recently been adapted for cell lineage tracing during development. Combined with single-cell RNA sequencing, these methods enable scalable lineage tracing with single-cell resolution. Here, I describe, scGESTALTv2, which combines cumulative CRISPR-Cas9 editing of a lineage barcode array with transcriptional profiling via droplet-based single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

The CRISPR-activated repair lineage tracing (CARLIN) mouse line uses DNA barcoding to enable high-resolution tracing of cell lineages in vivo (Bowling et al, Cell 181, 1410-1422.e27, 2020). CARLIN mice contain expressed barcodes that allow simultaneous interrogation of lineage and gene expression information from single cells.

View Article and Find Full Text PDF

A key goal of biology is to understand the origin of the many cell types that can be observed during diverse processes such as development, regeneration, and disease. Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell types in a tissue or organ. However, organizing the resulting taxonomy of cell types into lineage trees to understand the origins of cell states and relationships between cells remains challenging.

View Article and Find Full Text PDF

Re-arranging the Cis-regulatory Modules of Hox Complex in Drosophila via FLP-FRT and CRISPR/Cas9.

Methods Mol Biol

January 2025

Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD, USA.

FLP-FRT, a well-established technique for genome manipulation, and the revolutionary CRISPR/Cas9, known for its targeted indels, are combined in a novel approach. This unique method is applied to the Hox genes in the Drosophila melanogaster bithorax complex, which are closely located to the cis-regulatory modules that define their spatial-temporal regulation. The number and position of these genes are directly correlated to their expression pattern.

View Article and Find Full Text PDF

Cathepsin D (Ctsd) has emerged as a promising therapeutic target for Alzheimer's disease (AD) due to its role in degrading intracellular amyloid beta (Aβ). Enhancing Ctsd activity could reduce Aβ42 accumulation and restore the Aβ42/40 ratio, offering a potential AD treatment strategy. This study explored Ctsd demethylation in AD mouse models using dCas9-Tet1-mediated epigenome editing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!