Upconversion nanocomposites with multiple light-emitting centers have attracted great attention as functional materials, but their low efficiency limits their further applications. Herein, a novel, to the best of our knowledge, system for nanocomposites consisting of upconversion nanoparticles (UCNPs) and perovskite quantum dots (PeQDs) assembled with Ag nanoparticles (NPs) is proposed. Upconversion luminescence (UCL) operation from PeQDs is triggered by near-infrared (NIR) sensitization through Förster resonance energy transfer (FRET) and photon reabsorption (PR). Especially, the photoluminescence (PL) emission efficiency is found to be significantly enhanced due to the increased energy transfer efficiency and radiative decay rate in the UCNPs/CsPbBr nanocomposites. The results offer new opportunities to improve the UCL properties of perovskites and open new development in the fields of LED lighting, solar cells, biomedicine, and so on.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.514606 | DOI Listing |
Nano Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
Lanthanide-doped fluoride nanocrystals have emerged as promising tools in biomedicine, yet their applications are still limited by their low luminescence efficiency. Herein, we developed highly efficient lithium-based core-shell-shell (CSS) nanoprobes (NPs) featuring a rhombic active domain and a spherical inert protective shell. By introducing Yb as an energy transfer bridge and optimizing the CSS design, a remarkable 1643-fold enhancement in visible emission and a 33-fold increase in NIR emission are achieved compared to original nanoparticles.
View Article and Find Full Text PDFLight Sci Appl
January 2025
State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China.
Visible light microlasers are essential building blocks for integrated photonics. However, achieving low-threshold (μW), continuous-wave (CW) visible light lasing at room temperature (RT) has been a challenge because of the formidable requirement of population inversion at short wavelengths. Rare-earth (RE)-activated microcavities, featuring high-quality factor (Q) and small mode volume of whispering gallery modes, offer a great opportunity for achieving infrared-to-visible upconversion (UC) lasing.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China.
Smart control of energy interactions plays a key role in manipulating upconversion dynamics and tuning emission colors for lanthanide-doped materials. However, quantifying the energy flux in particular energy migration in the representative sensitizer-activator coupled upconversion system has remained a challenge. Here we report a conceptual model to examine the energy flux in a single nanoparticle by designing an interfacial energy transfer mediated nanostructure.
View Article and Find Full Text PDFBiomed Mater
December 2024
Yijishan Hospital of Wannan Medical College, No.2 Zheshan West Road, Wuhu City, Anhui Province, Wuhu, Anhui, 241001, CHINA.
Multimodal bioimaging is beneficial for clinical diagnosis and research due to the provision of comprehensive diagnostic information. However, the design of multifunctional bio-probes aggregating multiple bioimaging functions is greatly challenging. In this study, a multifunctional bio-probe based on lanthanide-based nanomaterials Sr2GdF7: Yb3+/Er3+/Tm3+ (abbreviated as SGF) was developed for in vivo multimodal imaging by co-adopting apropos lanthanides and tuning their molar ratio.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
Broadband upconversion has various applications in solar photovoltaic, infrared and terahertz detection imaging, and biomedicine. The low efficiency of the light-emitting diodes (LEDs) limits the broadband upconversion performance. In this paper, we propose to use surface microstructures to enhance the electroluminescence efficiency (ELE) of LEDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!