Neuropeptides represent a unique class of signaling molecules that have garnered much attention but require special consideration when identifications are gleaned from mass spectra. With highly variable sequence lengths, neuropeptides must be analyzed in their endogenous state. Further, neuropeptides share great homology within families, differing by as little as a single amino acid residue, complicating even routine analyses and necessitating optimized computational strategies for confident and accurate identifications. We present EndoGenius, a database searching strategy designed specifically for elucidating neuropeptide identifications from mass spectra by leveraging optimized peptide-spectrum matching approaches, an expansive motif database, and a novel scoring algorithm to achieve broader representation of the neuropeptidome and minimize reidentification. This work describes an algorithm capable of reporting more neuropeptide identifications at 1% false-discovery rate than alternative software in five neuronal tissue types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296898 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.3c00758 | DOI Listing |
NPJ Vaccines
January 2025
Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK.
The rapid development and worldwide distribution of COVID-19 vaccines is a remarkable achievement of biomedical research and logistical implementation. However, these developments are associated with the risk of a surge of substandard and falsified (SF) vaccines, as illustrated by the 184 incidents with SF and diverted COVID-19 vaccines which have been reported during the pandemic in 48 countries, with a paucity of methods for their detection in supply chains. In this context, matrix-assisted laser desorption ionisation-time of flight (MALDI-ToF) mass spectrometry (MS) is globally available for fast and accurate analysis of bacteria in patient samples, offering a potentially accessible solution to identify SF vaccines.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Plant Sciences, Institute of Biology, Leiden University, Leiden, The Netherlands.
Flavonoids are a group of specialized metabolites that are ubiquitously found within the plant kingdom. While they fulfill various important functions within the plant, they are also utilized by humans in a variety of different fields such as medicine, food science, and agriculture. Thus, to elucidate the chemical composition of any given plant extract, extraction and identification of flavonoids are of high interest.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany.
The extraction of plant essential oils (EOs) and analysis by gas chromatography coupled to mass spectrometry (GC-MS) are standard methods when studying aromatic plants and the chemical composition of EOs. Here, two simple methods for the extraction of EO compounds from leaves of Thymus vulgaris are described. Organic solvent extraction and solid-phase microextraction (SPME), respectively, are used and the results of the GC-MS analyses are compared.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Johannes-Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany.
Precise measurements of fundamental decay data such as energies and transition probabilities of radioactive isotopes are important for the development of corresponding nuclear modelling, activity determination and various applications in science and technology. The EMPIR project PrimA-LTD -"Towards new Primary Activity standardisation methods based on Low-Temperature Detectors" - aims to measure the electron-capture decay of Fe very precisely using Metallic Microcalorimeters (MMCs) with outstandingly high energy resolution. Using a high-statistics measurement, electron-capture probabilities shall be precisely determined and higher-order effects such as electron shake-up and shake-off shall be examined with unprecedented precision.
View Article and Find Full Text PDFChemosphere
January 2025
Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland. Electronic address:
The universe of possible chloro-paraffin (CP) structures is a complex one. Even the world of short-chain CPs (SCCPs) is large, containing thousands of constitutional isomers and stereoisomers. We investigated a technical SCCP mixture (Hordalub 80, Vantage Leuna, m = 56%) and found 33 CP-homologues in this material with carbon- (n) and chlorine-numbers (n) varying from 10 to 13 and 4-12, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!