Organic photodetectors (OPDs) have attracted tremendous interest due to their potential applications in wearable electronics. However, due to the nonideal contacts between the electrodes and organic semiconductors, OPDs still suffer from high dark current and slow frequency response. Herein, by inserting potassium aspartic acid (PAA) interlayers between ITO/metal oxides and the metal oxides/active layer, the shunts and hole injections are blocked and the energy levels of the electrodes are aligned. As a result, our dual-interface modified OPDs (ITO/PAA/ZnO/PAA/PTB7-Th:ITIC/MoO/Ag) exhibit suppressed dark current 550 times lower than the reference device, corresponding to specific detectivity of 2.1 × 10 Jones, broad linear dynamic range of 113 dB, and quick response time to the nanosecond level. PAA interlayers have also been demonstrated to improve the storage stability of OPDs, leading to 10 times slower degradation for the on/off ratio when compared with the reference and conventional polyethylenimine-modified OPDs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c00367DOI Listing

Publication Analysis

Top Keywords

dark current
12
potassium aspartic
8
aspartic acid
8
paa interlayers
8
opds
5
dual interface
4
interface modification
4
modification potassium
4
acid realize
4
realize low
4

Similar Publications

Light pollution disrupts the natural dark-light rhythmicity of the world and alters the spectral composition of the nocturnal sky, with far-reaching impacts on natural systems. While the costs of light pollution are now documented across scales and taxa, community-level mitigations for arthropods remain unclear. To test two light pollution mitigation strategies, we replaced all 32 streetlights in the largest visitor center in Grand Teton National Park (Wyoming, USA) to allow wireless control over each luminaries' color and brightness.

View Article and Find Full Text PDF

Characterization of Optokinetic Nystagmus in Healthy Participants With a Novel Oculography Device.

Otolaryngol Head Neck Surg

January 2025

Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA.

Objective: To develop a proof-of-concept smart-phone-based eye-tracking algorithm to assess non-pathologic optokinetic (OKN) nystagmus in healthy participants. Current videonystagmography (VNG) is typically restricted to in-office use, and advances in portable vestibular diagnostics would yield immense public health benefits.

Study Design: Prospective cohort study.

View Article and Find Full Text PDF

Raising the operating temperature of mid-wavelength infrared detectors is critical for meeting the low size, weight, and power (SWaP) demands of infrared imaging systems. In this work, we report and analyze a high operating temperature (HOT) InAsSb nBn mid-wave infrared (MWIR) focal plane array (FPA) and single element photodetectors with AlAs/AlSb superlattices as the electron barrier. Under an applied bias of -350 mV, the nBn photodetectors demonstrate a dark current density of 2.

View Article and Find Full Text PDF

Type-II superlattice (T2SL) detectors are emerging as key technologies for next-generation long-wavelength infrared (LWIR) applications, particularly in the 8-14 µm range, offering advantages in space exploration, medical imaging, and defense. A major challenge in improving quantum efficiency (QE) lies in achieving sufficient light absorption without increasing the active layer (AL) thickness, which can elevate dark current and complicate manufacturing. Traditional methods, such as thickening the absorber, are limited by the short carrier lifetime in T2SLs, necessitating alternative solutions.

View Article and Find Full Text PDF

We present a high-performance Ge/Si PIN photodetector that leverages the advanced Ge/Si hetero-bonding method. The sputtered microcrystalline Ge is utilized as the interlayer, in conjunction with Smart-Cut technology, to fabricate high-quality Si-based Ge films. The exfoliated Ge film exhibits a surface roughness of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!