Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: The aim of this study was to clinically validate a fully automated AI model for magnetic resonance imaging (MRI)-based quantifications of lumbar spinal canal stenosis.
Materials And Methods: This retrospective study included lumbar spine MRI of 100 consecutive clinical patients (56 ± 17 years; 43 females, 57 males) performed on clinical 1.5 (51 examinations) and 3 T MRI scanners (49 examinations) with heterogeneous clinical imaging protocols. The AI model performed segmentations of the thecal sac on axial T2-weighted sequences. Based on these segmentations, the anteroposterior (AP) and mediolateral (ML) distance, and the area of the thecal sac were measured in a fully automated manner. For comparison, 2 fellowship-trained musculoskeletal radiologists performed the same segmentations and measurements independently. Statistics included 1-sample t tests, the intraclass correlation coefficient (ICC), Bland-Altman plots, and Dice coefficients. A P value of <0.05 was considered statistically significant.
Results: The average measurements of the AI model, reader 1, and reader 2 were 194 ± 72 mm 2 , 181 ± 71 mm 2 , and 179 ± 70 mm 2 for thecal sac area, 13 ± 3.3 mm, 12.6 ± 3.3 mm, and 12.6 ± 3.2 mm for AP distance, and 19.5 ± 3.9 mm, 20 ± 4.3 mm, and 19.4 ± 4 mm for ML distance, respectively. Significant differences existed for all pairwise comparisons, besides reader 1 versus AI model for the ML distance and reader 1 versus reader 2 for the AP distance ( P = 0.1 and P = 0.21, respectively). The pairwise mean absolute errors among reader 1, reader 2, and the AI model ranged from 0.59 mm and 0.75 mm for the AP distance, from 1.16 mm to 1.37 mm for the ML distance, and from 7.9 mm 2 to 15.54 mm 2 for the thecal sac area. Pairwise ICCs among reader 1, reader 2, and the AI model ranged from 0.91 and 0.94 for the AP distance and from 0.86 to 0.9 for the ML distance without significant differences. For the thecal sac area, the pairwise ICC between both readers and the AI model of 0.97 each was slightly, but significantly lower than the ICC between reader 1 and reader 2 of 0.99. Similarly, the Dice coefficient and Hausdorff distance between both readers and the AI model were significantly lower than the values between reader 1 and reader 2, overall ranging from 0.93 to 0.95 for the Dice coefficients and 1.1 to 1.44 for the Hausdorff distances.
Conclusions: The investigated AI model is reliable for assessing the AP and the ML thecal sac diameters with human level accuracies. The small differences for measurement and segmentation of the thecal sac area between the AI model and the radiologists are likely within a clinically acceptable range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RLI.0000000000001070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!