Macaques trained to perform bipedally used running gaits across a wide range of speeds. At higher speeds they preferred unilateral skipping (galloping). The same asymmetric stepping pattern was used while hurdling across two low obstacles placed at the distance of a stride within our experimental track. In bipedal macaques during skipping, we expected a differential use of the trailing and leading legs. The present study investigated global properties of the effective and virtual leg, the location of the virtual pivot point (VPP), and the energetics of the center of mass (CoM), with the aim of clarifying the differential leg operation during skipping in bipedal macaques. When skipping, macaques displayed minor double support and aerial phases during one stride. Asymmetric leg use was indicated by differences in leg kinematics. Axial damping and tangential leg work did not influence the indifferent peak ground reaction forces and impulses, but resulted in a lift of the CoM during contact of the leading leg. The aerial phase was largely due to the use of the double support. Hurdling amplified the differential leg operation. Here, higher ground reaction forces combined with increased double support provided the vertical impulse to overcome the hurdles. Following CoM dynamics during a stride, skipping and hurdling represented bouncing gaits. The elevation of the VPP of bipedal macaques resembled that of human walking and running in the trailing and leading phases, respectively. Because of anatomical restrictions, macaque unilateral skipping differs from that of humans, and may represent an intermediate gait between grounded and aerial running.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007588 | PMC |
http://dx.doi.org/10.1242/jeb.246675 | DOI Listing |
Sci Rep
December 2024
Graduate School of Human Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
Recent evidence indicates that human ancestors utilized a combination of quadrupedal walking, climbing, and bipedal walking. Therefore, the origin of bipedalism may be linked to underlying mechanisms supporting diverse locomotor modes. This study aimed to elucidate foundations of varied locomotor modes from the perspective of motor control by identifying muscle synergies and demonstrating similarities in synergy compositions across different locomotor modes in chimpanzees and Japanese macaques.
View Article and Find Full Text PDFAm J Biol Anthropol
September 2024
Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto, Japan.
Objectives: Metatarsal bones constitute a key functional unit of the foot in primates. While the form-function relationships of metatarsals have been extensively studied, particularly in relation to the loss of the grasping ability of the foot in humans in contrast to apes, the effect of phyletic history on the metatarsal morphology and its variability remains largely unknown.
Materials And Methods: Here, we evaluate how the strength of the phylogenetic signal varies from the first to the fifth metatarsal in humans, chimpanzees, gorillas, orangutans, gibbons, and Japanese macaques.
J Exp Zool A Ecol Integr Physiol
June 2024
Department of Mechanical Engineering, Keio University, Yokohama, Japan.
J Exp Biol
April 2024
Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama 2238522, Japan.
Macaques trained to perform bipedally used running gaits across a wide range of speeds. At higher speeds they preferred unilateral skipping (galloping). The same asymmetric stepping pattern was used while hurdling across two low obstacles placed at the distance of a stride within our experimental track.
View Article and Find Full Text PDFJ Hum Evol
June 2023
Graduate School of Human Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!