To give a comprehensive account of the environmental acceptability of 1,1,2,3-tetrafluoropropene (CFCF-CHF) in the troposphere, we have examined the oxidation reaction pathways and kinetics of CFCF-CHF initiated by Cl-atoms using the second-order Møller-Plesset perturbation (MP2) theory along with the 6-31+G(d,p) basis set. We also performed single-point energy calculations to further refine the energies at the CCSD(T) level along with the basis sets 6-31+G(d,p) and 6-311++G(d,p). The estimation of the relative energies and thermodynamic parameters of the CFCF-CHF + Cl reaction clearly shows that Cl-atom addition reaction pathways are more dominant compared to H-abstraction reaction pathways. The value of the rate coefficient for each reaction channel is calculated using the conventional transition state theory (TST) over the temperature range of 200-1000 K at 1 atm. The estimated overall rate coefficients for the title reaction are found to be 1.10 × 10, 1.21 × 10, and 1.13 × 10 cm per molecule per s the respective calculation methods MP2/6-31+G(d,p), CCSD(T)//MP2/6-31+G(d,p), and CCSD(T)/6-311++G(d,p)//MP2/6-31+G(d,p), at 298.15 K. Moreover, the calculated rate coefficients and percentage branching ratio values suggest that the Cl-atom addition reaction at the β-carbon atom is more preferable to that of the α-carbon addition to CFCF-CHF. Based on the rate coefficient values calculated by the three different methods, the atmospheric lifetime for the title reaction at 298.15 K is estimated. The radiative efficiency (RE) and Global Warming Potential (GWP) results of the title molecule show that its GWP would be negligible. Further, we have explored the degradation of its product radicals in the presence of O and NO. From the degradation results, we have found that CF(Cl)COF, FCOCHF, FCFO and FCOCl are formed as stable end products along with various radicals such as ˙CFCl and ˙CHF. Therefore, these findings of kinetic and mechanistic data can be applied to the development and implementation of a novel CFC replacement.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3em00545cDOI Listing

Publication Analysis

Top Keywords

reaction pathways
12
reaction
9
pathways kinetics
8
1123-tetrafluoropropene cfcf-chf
8
cfcf-chf reaction
8
degradation product
8
product radicals
8
radicals presence
8
cl-atom addition
8
addition reaction
8

Similar Publications

Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH).

View Article and Find Full Text PDF

Integrating Enzymes with Reticular Frameworks To Govern Biocatalysis.

Angew Chem Int Ed Engl

January 2025

Sun Yat-Sen University, School of Chemistry, 135 Xingang West, 510275, Guangzhou, CHINA.

Integrating enzymes with reticular frameworks offers promising avenues for access to functionally tailorable biocatalysis. This Minireview explores recent advances in enzyme-reticular frameworks hybrid biocomposites, focusing on the utilization of porous reticular frameworks, including metal-organic frameworks, covalent-organic frameworks, and hydrogen-bonded organic frameworks, to regulate the reactivity of an enzyme encapsulated inside mainly by pore infiltration and in situ encapsulation strategies. We highlight how pore engineering and host-guest interfacial interactions within reticular frameworks create tailored microenvironments that substantially impact the mass transfer and enzyme's conformation, leading to biocatalytic rate enhancement, or imparting enzyme with non-native biocatalytic functions including substrate-selectivity and new activity.

View Article and Find Full Text PDF

[Mechanism of ginsenoside Rg_1 in regulating autophagy through miR-155/Notch1/Hes1 pathway to attenuate hypoxia/reoxygenation injury in HL-1 cells].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.

This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.

View Article and Find Full Text PDF

The aim of this study was to investigate the underlying mechanism of chrysophanol(Chr) in reducing inflammation and foam cell formation induced by oxidized low-density lipoprotein(ox-LDL) and to investigate the targets and pathways related to effects of Chr on coronary atherosclerosis, providing a theoretical basis for the development of new clinical drugs. RAW264.7 macrophages were cultured in vitro, and after determining the appropriate concentrations of Chr and ox-LDL for treating RAW264.

View Article and Find Full Text PDF

A low-molecular-weight compound whose structure strikes a fine balance between hydrophobicity and hydrophilicity may form coacervates via liquid-liquid phase separation in an aqueous solution. These coacervates may encapsulate and convoy proteins across the plasma membrane into the cell. However, releasing the cargo from the vehicle to the cytosol is challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!