Motivation: Intra-host variants refer to genetic variations or mutations that occur within an individual host organism. These variants are typically studied in the context of viruses, bacteria, or other pathogens to understand the evolution of pathogens. Moreover, intra-host variants are also explored in the field of tumor biology and mitochondrial biology to characterize somatic mutations and inherited heteroplasmic mutations. Intra-host variants can involve long insertions, deletions, and combinations of different mutation types, which poses challenges in their identification. The performance of current methods in detecting of complex intra-host variants is unknown.
Results: First, we simulated a dataset comprising 10 samples with 1869 intra-host variants involving various mutation patterns and benchmarked current variant detection software. The results indicated that though current software can detect most variants with F1-scores between 0.76 and 0.97, their performance in detecting long indels and low frequency variants was limited. Thus, we developed a new software, PySNV, for the detection of complex intra-host variations. On the simulated dataset, PySNV successfully detected 1863 variant cases (F1-score: 0.99) and exhibited the highest Pearson correlation coefficient (PCC: 0.99) to the ground truth in predicting variant frequencies. The results demonstrated that PySNV delivered promising performance even for long indels and low frequency variants, while maintaining computational speed comparable to other methods. Finally, we tested its performance on SARS-CoV-2 replicate sequencing data and found that it reported 21% more variants compared to LoFreq, the best-performing benchmarked software, while showing higher consistency (62% over 54%) within replicates. The discrepancies mostly exist in low-depth regions and low frequency variants.
Availability And Implementation: https://github.com/bnuLyndon/PySNV/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10937218 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btae116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!