Background: Artificial intelligence (AI) has shown promise in the early detection of various cardiac conditions from a standard 12-lead electrocardiogram (ECG). However, the ability of AI to identify abnormalities from single-lead recordings across a range of pathological conditions remains to be systematically investigated. This study aims to assess the performance of a convolutional neural network (CNN) using a single-lead (D1) rather than a standard 12-lead setup for accurate identification of ECG abnormalities.
Methods: We designed and trained a lightweight CNN to identify 20 different cardiac abnormalities on ECGs, using data from the PTB-XL dataset. With a relatively simple architecture, the network was designed to accommodate different combinations of leads as input (<100,000 learnable parameters). We compared various lead setups such as the standard 12-lead, D1 alone, and D1 paired with an additional lead.
Results: This has been corrected to “The CNN based on single-lead ECG (D1) achieved satisfactory performance compared to the standard 12-lead framework (average percentage AUC difference: −8.7%). Notably, for certain diagnostic classes, there was no difference in the diagnostic AUC between the single-lead and the standard 12-lead setups. When a second lead was detected in the CNN in addition to D1, the AUC gap was further reduced to an average percentage difference of -2.8% compared with that of the standard 12-lead setup.
Conclusions: A relatively lightweight CNN can predict different classes of cardiac abnormalities from D1 alone and the standard 12-lead ECG. Considering the growing availability of wearable devices capable of recording a D1-like single-lead ECG, we discuss how our findings contribute to the foundation of a large-scale screening of cardiac abnormalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901971 | PMC |
http://dx.doi.org/10.3389/fcvm.2024.1327179 | DOI Listing |
PLoS One
January 2025
Department of Computer Science, Khalifa University, Abu Dhabi, UAE.
A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in non-homogeneous temperature fields. The aim of this research is to explore the use of data-driven models in measuring temperature distributions in a spatially resolved manner using emission spectroscopy data. Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN).
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan.
Petroleum hydrocarbon pollution causes significant damage to soil, so accurate prediction and early intervention are crucial for sustainable soil management. However, traditional soil analysis methods often rely on statistical methods, which means they always rely on specific assumptions and are sensitive to outliers. Existing machine learning based methods convert features containing spatial information into one-dimensional vectors, resulting in the loss of some spatial features of the data.
View Article and Find Full Text PDFPLoS One
January 2025
Engineering Research Center of Hydrogen Energy Equipment& Safety Detection, Universities of Shaanxi Province, Xijing University, Xi'an, China.
The traditional method of corn quality detection relies heavily on the subjective judgment of inspectors and suffers from a high error rate. To address these issues, this study employs the Swin Transformer as an enhanced base model, integrating machine vision and deep learning techniques for corn quality assessment. Initially, images of high-quality, moldy, and broken corn were collected.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, USA.
Purpose: The integration of artificial intelligence (AI), particularly deep learning (DL), with optical coherence tomography (OCT) offers significant opportunities in the diagnosis and management of glaucoma. This article explores the application of various DL models in enhancing OCT capabilities and addresses the challenges associated with their clinical implementation.
Methods: A review of articles utilizing DL models was conducted, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs), autoencoders, and large language models (LLMs).
Int J Legal Med
January 2025
Centro de Estatística e Aplicações Universidade de Lisbao, CEAUL, Faculdade de Ciências da Universidade de Lisboa no Bloco C6 - Piso 4, Lisboa, 1749-016, Portugal.
Introduction: In the reconstructive phase of medico-legal human identification, the sex estimation is crucial in the reconstruction of the biological profile and can be applied both in identifying victims of mass disasters and in the autopsy room. Due to the inherent subjectivity associated with traditional methods, artificial intelligence, specifically, convolutional neural networks (CNN) may present a competitive option.
Objectives: This study evaluates the reliability of VGG16 model as an accurate forensic sex prediction algorithm and its performance using orthopantomography (OPGs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!