Redox Processes Involving Oxygen: The Surprising Influence of Redox-Inactive Lewis Acids.

JACS Au

Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States.

Published: February 2024

Metalloenzymes with heteromultimetallic active sites perform chemical reactions that control several biogeochemical cycles. Transformations catalyzed by such enzymes include dioxygen generation and reduction, dinitrogen reduction, and carbon dioxide reduction-instrumental transformations for progress in the context of artificial photosynthesis and sustainable fertilizer production. While the roles of the respective metals are of interest in all these enzymatic transformations, they share a common factor in the transfer of one or multiple redox equivalents. In light of this feature, it is surprising to find that incorporation of redox- metals into the active site of such an enzyme is critical to its function. To illustrate, the presence of a redox-inactive Ca center is crucial in the Oxygen Evolving Complex, and yet particularly intriguing given that the transformation catalyzed by this cluster is a redox process involving four electrons. Therefore, the effects of redox inactive metals on redox processes-electron transfer, oxygen- and hydrogen-atom transfer, and O-O bond cleavage and formation reactions-mediated by transition metals have been studied extensively. Significant effects of redox inactive metals have been observed on these redox transformations; linear free energy correlations between Lewis acidity and the redox properties of synthetic model complexes are observed for several reactions. In this Perspective, these effects and their relevance to multielectron processes will be discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900226PMC
http://dx.doi.org/10.1021/jacsau.3c00675DOI Listing

Publication Analysis

Top Keywords

redox
8
effects redox
8
redox inactive
8
inactive metals
8
metals
5
redox processes
4
processes involving
4
involving oxygen
4
oxygen surprising
4
surprising influence
4

Similar Publications

Cuprous oxide (CuO) thin films were chemically deposited from a solution onto GaAs(100) and (111) substrates using a simple three-component solution at near-ambient temperatures (10-60 °C). Interestingly, a similar deposition onto various other substrates including Si(100), Si(111), glass, fluorine-doped tin oxide, InP, and quartz resulted in no film formation. Films deposited on both GaAs(100) and (111) were found alongside substantial etching of the substrates.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Algal decomposition plays an important role in affecting phosphorus (P) release from sediments in eutrophic lakes under global warming. Yet how rising air temperature affect endogenous P release from sediments during the algal decomposition is poorly understood. In this study, effect of increasing air temperature on endogenous P release was investigated.

View Article and Find Full Text PDF

TiO(OH) Nanosheets with Catalytic Antioxidative Activity Alleviate Oxidative Injury in Diabetic Cardiomyopathy.

J Am Chem Soc

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.

Diabetic cardiomyopathy (DCM) is one of the most lethal complications of diabetes and is induced by the overproduction of reactive oxygen species (ROS) in cardiomyocytes due to sustained high glucose levels, leading to cardiac oxidative damage and final sudden death. Drugs and antioxidants currently applied to the clinical therapy of DCM fail to scavenge ROS efficiently, resulting in compromised therapeutic efficacy. Herein, a nanocatalytic antioxidative therapeutic strategy is proposed for DCM treatment.

View Article and Find Full Text PDF

Dichlorination of olefins with trichloroisocyanuric acid (TCCA) and tetrabutylammonium chloride (TBACl).

Org Biomol Chem

January 2025

Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey.

Herein, a new metal-free, molecular chlorine-free, environmentally friendly, atom-economical, short time, inexpensive and simple operation method with mild reaction conditions for chlorination of alkenes, cyclic alkenes, ,-unsaturated carbonyl compounds, heteroaromatics, and natural products was reported with up to 96% yields using trichloroisocyanuric acid (TCCA) as the electrophilic chlorine source and TBACl as the nucleophilic chlorine source. It was demonstrated with bicyclic alkene benzonorbornadiene that regioselective chlorobromination and dibromination reactions can be carried out through TCCA/TBABr redox reactions, where TCCA acts as an oxidant in the presence of TBABr. The structures of the redox products were confirmed as a result of control experiments conducted with the newly presented DBI/TBACl and DBI/TBABr halogenation pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!