Axially chiral aldehydes have emerged recently as a unique class of motifs for drug design. However, few biocatalytic strategies have been reported to construct structurally diverse atropisomeric aldehydes. Herein, we describe the characterization of alcohol dehydrogenases to catalyze atroposelective desymmetrization of the biaryl dialdehydes. Investigations into the interactions between the substrate and key residues of the enzymes revealed the distinct origin of atroposelectivity. A panel of 13 atropisomeric monoaldehydes was synthesized with moderate to high enantioselectivity (up to >99% ee) and yields (up to 99%). Further derivatization allows enhancement of the diversity and application potential of the atropisomeric compounds. This study effectively expands the scope of enzymatic synthesis of atropisomeric aldehydes and provides insights into the binding modes and recognition mechanisms of such molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900225PMC
http://dx.doi.org/10.1021/jacsau.3c00814DOI Listing

Publication Analysis

Top Keywords

atropisomeric aldehydes
8
atroposelective synthesis
4
aldehydes
4
synthesis aldehydes
4
aldehydes alcohol
4
alcohol dehydrogenase-catalyzed
4
dehydrogenase-catalyzed stereodivergent
4
stereodivergent desymmetrization
4
desymmetrization axially
4
axially chiral
4

Similar Publications

Imidazo[1,2-]pyridines are privileged heterocycles with diverse applications in medicinal chemistry; however, the catalytic asymmetric synthesis of these heterocyclic structures remains underexplored. Herein, we present an efficient and modular approach for the atroposelective synthesis of axially chiral imidazo[1,2-]pyridines via an asymmetric multicomponent reaction. By utilizing a chiral phosphoric acid catalyst, the Groebke-Blackburn-Bienaymé reaction involving various 6-aryl-2-aminopyridines, aldehydes, and isocyanides gave access to a wide range of imidazo[1,2-]pyridine atropoisomers with high to excellent yields and enantioselectivities.

View Article and Find Full Text PDF
Article Synopsis
  • A four-component Ugi reaction is introduced for creating novel C-N atropisomeric peptide analogues, using common materials like anilines and aldehydes to achieve complex compounds with high yields and strong stereoselectivity.
  • Adjusting the reaction temperature allows for stereodivergent outcomes, enabling the selective formation of either diastereoisomer from the same starting materials while maintaining excellent stereocontrol.
  • Research includes detailed experimental and computational analysis of the reaction mechanism, revealing that the new atropisomeric compounds exhibit varying levels of inhibitory activity, highlighting the importance of the different atropisomers' structures in their efficacy.
View Article and Find Full Text PDF

Axially chiral aldehydes have emerged recently as a unique class of motifs for drug design. However, few biocatalytic strategies have been reported to construct structurally diverse atropisomeric aldehydes. Herein, we describe the characterization of alcohol dehydrogenases to catalyze atroposelective desymmetrization of the biaryl dialdehydes.

View Article and Find Full Text PDF

Atropisomeric compounds are found extensively as natural products, as ligands for asymmetric transition-metal catalysis, and increasingly as bioactive and pharmaceutically relevant targets. Their enantioselective synthesis is therefore an important ongoing research target. While a vast majority of known atropisomeric structures are (hetero)biaryls, which display hindered rotation around a C-C single bond, our group's long-standing interest in the control of molecular conformation has led to the identification and stereoselective preparation of a variety of other classes of "nonbiaryl" atropisomeric compounds displaying restricted rotation around C-C, C-N, C-O, and C-S single bonds.

View Article and Find Full Text PDF

Atropisomerism in Drug Discovery: A Medicinal Chemistry Perspective Inspired by Atropisomeric Class I PI3K Inhibitors.

Acc Chem Res

September 2022

Gilead Sciences, Inc., 199 E Blaine Street, Seattle, Washington 98102, United States.

Atropisomerism is a type of axial chirality resulting from hindered rotation about a σ bond that gives rise to nonsuperimposable stereoisomers (termed "atropisomers"). The inversion of chirality of an atropisomeric axis is a time- and temperature-dependent dynamic process occurring by simple bond rotation. For this reason, the rotational energy barrier (Δ) and the interconversion rate between an atropisomeric pair of biologically active molecules are important parameters to consider in drug discovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!