Training Radiologists to Interpret Contrast-enhanced Mammography: Toward a Standardized Lexicon.

J Breast Imaging

University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, Department of Radiology, Pittsburgh, PA.

Published: March 2021

Objective: Using terms adapted from the BI-RADS Mammography and MRI lexicons, we trained radiologists to interpret contrast-enhanced mammography (CEM) and assessed reliability of their description and assessment.

Methods: A 60-minute presentation on CEM and terminology was reviewed independently by 21 breast imaging radiologist observers. For 21 CEM exams with 31 marked findings, observers recorded background parenchymal enhancement (BPE) (minimal, mild, moderate, marked), lesion type (oval/round or irregular mass, or non-mass enhancement), intensity of enhancement (none, weak, medium, strong), enhancement quality (none, homogeneous, heterogeneous, rim), and BI-RADS assessment category (2, 3, 4A, 4B, 4C, 5). "Expert" consensus of 3 other radiologists experienced in CEM was developed. Kappa statistic was used to assess agreement between radiologists and expert consensus, and between radiologists themselves, on imaging feature categories and final assessments. Reproducibility of specific feature descriptors was assessed as fraction of consensus-concordant responses.

Results: Radiologists demonstrated moderate agreement for BPE, (mean kappa, 0.43; range, 0.05-0.69), and lowest reproducibility for "minimal." Agreement was substantial for lesion type (mean kappa, 0.70; range, 0.47-0.93), moderate for intensity of enhancement (mean kappa, 0.57; range, 0.44-0.76), and moderate for enhancement quality (mean kappa, 0.59; range, 0.20-0.78). Agreement on final assessment was fair (mean kappa, 0.26; range, 0.09-0.44), with BI-RADS category 3 the least reproducible. Decision to biopsy (BI-RADS 2-3 vs 4-5) showed moderate agreement with consensus (mean kappa, 0.54; range, -0.06-0.87).

Conclusion: With minimal training, agreement for description of CEM findings by breast imaging radiologists was comparable to other BI-RADS lexicons.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jbi/wbaa115DOI Listing

Publication Analysis

Top Keywords

radiologists interpret
8
interpret contrast-enhanced
8
contrast-enhanced mammography
8
breast imaging
8
lesion type
8
intensity enhancement
8
enhancement quality
8
consensus radiologists
8
moderate agreement
8
kappa
7

Similar Publications

CXR-LLaVA: a multimodal large language model for interpreting chest X-ray images.

Eur Radiol

January 2025

Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.

Objective: This study aimed to develop an open-source multimodal large language model (CXR-LLaVA) for interpreting chest X-ray images (CXRs), leveraging recent advances in large language models (LLMs) to potentially replicate the image interpretation skills of human radiologists.

Materials And Methods: For training, we collected 592,580 publicly available CXRs, of which 374,881 had labels for certain radiographic abnormalities (Dataset 1) and 217,699 provided free-text radiology reports (Dataset 2). After pre-training a vision transformer with Dataset 1, we integrated it with an LLM influenced by the LLaVA network.

View Article and Find Full Text PDF

A Structured, Anatomy-Based Chest CT Interpretation Curriculum for Pulmonary Fellows Covering the Main Patterns of Parenchymal Lung Disease.

MedEdPORTAL

January 2025

Associate Professor, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine; Staff Physician, Pulmonary, Critical Care and Sleep Medicine Section, Veterans Affairs Puget Sound Healthcare System.

Introduction: Chest computed tomography (CT) interpretation is a key competency for pulmonary fellows, with many resources intended for radiologists but very few for this specific group. We endeavored to create a curriculum to teach chest CT interpretation to first-year pulmonary fellows.

Methods: We assembled a team of two pulmonologists, one radiologist, and a fellow with computer drafting software experience.

View Article and Find Full Text PDF

The aim of our study was to evaluate the specific performance of an artificial intelligence (AI) algorithm for lung nodule detection in chest radiography for a larger number of nodules of different sizes and densities using a standardized phantom approach. A total of 450 nodules with varying density (d1 to d3) and size (3, 5, 8, 10 and 12 mm) were inserted in a Lungman phantom at various locations. Radiographic images with varying projections were acquired and processed using the AI algorithm for nodule detection.

View Article and Find Full Text PDF

Deep Learning to Simulate Contrast-Enhanced MRI for Evaluating Suspected Prostate Cancer.

Radiology

January 2025

From the Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen University, Taoyuan Rd No. 89, Nanshan District, Shenzhen 518000, Guangdong, China (H.H., Z.D., Y.Q.); Medical AI Laboratory and Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China (J.M., R.L., B.H.); Department of Medical Imaging, People's Hospital of Longhua, Shenzhen, Guangdong, China (X.P., Y.Z.); and Department of Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, China (D.Z., G.H.).

Background Multiparametric MRI, including contrast-enhanced sequences, is recommended for evaluating suspected prostate cancer, but concerns have been raised regarding potential contrast agent accumulation and toxicity. Purpose To evaluate the feasibility of generating simulated contrast-enhanced MRI from noncontrast MRI sequences using deep learning and to explore their potential value for assessing clinically significant prostate cancer using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1.

View Article and Find Full Text PDF

Introduction: A chest X-ray (CXR) is the most common imaging investigation performed worldwide. Advances in machine learning and computer vision technologies have led to the development of several artificial intelligence (AI) tools to detect abnormalities on CXRs, which may expand diagnostic support to a wider field of health professionals. There is a paucity of evidence on the impact of AI algorithms in assisting healthcare professionals (other than radiologists) who regularly review CXR images in their daily practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!