It is of interest to develop wide-temperature domain damped hydrophobic materials. In this paper, we designed incorporating bio-based phenolic resin into the IIR matrix and introducing dibenzyl fork acetone (DBA) into the main chain structure with sodium hydroxide activation to construct three-dimensional network. In this paper, we designed incorporating bio-based phenolic resin into the IIR matrix and introducing dibenzyl fork acetone (DBA) into the main chain structure with sodium hydroxide activation to construct three-dimensional network. The added bio-based phenolic resin has reticulated structure blended with butyl rubber, combined with sodium hydride activation-modified IIR. The results show that sodium hydride activated modification of DBA is introduced into the main chain structure of IIR by infrared and H NMR analysis. The material hydrophobic is realized by the introduction of DBA with static water contact angle of 103.5°. The addition of 10phr lignin-based phenolic resin (LPF) is compatible with IIR, and the torque can reach 7.0 N-m. The tensile elongation of the modified butyl rubber composite can reach 2400% with tensile strength up to 11.43 MPa, while the damping factor can reach 0.37 even at 70 °C. The thermal stability of the composites is enhanced with mass retention rate of 28%. The bio-based PF/NaH activation-modified butyl rubber damping material has potential applications in damping hydrophobicity with wide temperature range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904857PMC
http://dx.doi.org/10.1038/s41598-024-55823-xDOI Listing

Publication Analysis

Top Keywords

butyl rubber
16
phenolic resin
16
three-dimensional network
12
bio-based phenolic
12
main chain
12
chain structure
12
rubber damping
8
paper designed
8
designed incorporating
8
incorporating bio-based
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!