Objective: In our previous study, we identified a notable increase in miR-548ag content after obesity, which contributes to the progression of Type 2 diabetes Mellitus(T2DM) through the up-regulation of Dipeptidyl Peptidase-4(DPP4) expression within the liver. However, the precise molecular mechanisms underlying the upregulation of DPP4 by miR-548ag remain elusive. Mature miRNAs rich in GU sequences can activate the TLR(7/8)/NF-κB signalling pathway, which transcriptionally activates DPP4 expression. Notably, the proportion of GU sequences in hsa-miR-548ag was found to be 47.6%. The study proposes a hypothesis suggesting that miR-548ag could potentially increase DPP4 expression in hepatocytes by activating the TLR(7/8)/NF-κB signalling pathway.
Methods: Male C57BL/6J mice were fed normal chow diet (NCD, n = 16) or high-fat diet (HFD, n = 16) for 12 weeks. For a duration of 6 weeks, NCD mice received intraperitoneal injections of a miR-548ag mimic, while HFD mice and db/db mice (n = 16) were administered intraperitoneal injections of a miR-548ag inhibitor. qRT-PCR and Western Blot were used to detect the expression level of miR-548ag, DPP4 and the activation of TLR(7/8)/NF-κB signalling pathway. HepG2 and L02 cells were transfected with miR-548ag mimic, miR-548ag inhibitor, TLR7/8 interfering fragment, and overexpression of miR-548ag while inhibiting TLR7/8, respectively.
Results: (1) We observed elevated levels of miR-548ag in the serum, adipose tissue, and liver of obese mice, accompanied by an upregulation of TLR7/8, pivotal protein in the NF-κB pathway, and DPP4 expression in the liver. (2) miR-548ag promotes DPP4 expression in hepatocytes via the TLR(7/8)/NF-κB signalling pathway, resulting in a reduction in the glucose consumption capacity of hepatocytes. (3) The administration of a miR-548ag inhibitor enhanced glucose tolerance and insulin sensitivity in db/db mice.
Conclusions: MiR-548ag promotes the expression of DPP4 in hepatocytes by activating the TLR(7/8)/NF-κB signalling pathway. MiR-548ag may be a potential target for the treatment of T2DM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217002 | PMC |
http://dx.doi.org/10.1038/s41366-024-01504-8 | DOI Listing |
Mol Biol Rep
January 2025
Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China.
Dipeptidyl peptidase 4 (DPP4) is a serine protease widely distributed in membrane-bound and soluble forms in various tissues and organs throughout the body. DPP4 plays a role in inflammation, immune regulation, cell growth, migration and differentiation. The role of DPP4 in tumors has garnered increasing attention.
View Article and Find Full Text PDFCurr Mol Pharmacol
January 2025
Otolaryngology Department, the Second Hospital of Hebei Medical University, Shijiazhuang, PRChina 050000.
Background: Allergic Rhinitis (AR) is an inflammatory condition characterized by nasal mucosa remodeling, driven by Immunoglobulin E (IgE). Platycodin D (PLD) exhibits a wide range of bioactive properties.
Aim: The aim of this work was to investigate the potential protective effects of PLD on AR, as well as the underlying mechanisms.
Biomedicines
December 2024
Clinical Department of Diabetology, Hypertension and Internal Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland.
Thyroid cancer (TC), due to its heterogeneous nature, remains a clinical challenge. Many factors can initiate the carcinogenesis process of various types of TC, which complicates diagnosis and treatment. The presented review gathers current information on specific types of TC, taking into account the effects of the COVID-19 pandemic.
View Article and Find Full Text PDFVet Microbiol
February 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. Electronic address:
bioRxiv
December 2024
Laboratorio de Genética e Cardiologia Molecular, Faculdade de Medicina, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
Dipeptidyl peptidase 4 (DPP4) is a transmembrane serine exopeptidase abundantly expressed in the kidneys, predominantly in the proximal tubule (PT); however, its non-enzymatic functions in this nephron segment remain poorly understood. While DPP4 physically associates with the Na/H exchanger isoform 3 (NHE3) and its inhibitors exert natriuretic effects, the DPP4 role in blood pressure (BP) regulation remains controversial. This study investigated the effects of PT-specific deletion ( ) and global deletion ( ) on systolic blood pressure (SBP), natriuresis, and NHE3 regulation under baseline and angiotensin II (Ang II)-stimulated conditions in both male and female mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!