Peptide-based liquid-liquid phase separated domains, or coacervates, are a biomaterial gaining new interest due to their exciting potential in fields ranging from biosensing to drug delivery. In this study, we demonstrate that coacervates provide a simple and biocompatible medium to improve nucleic acid biosensors through the sequestration of both the biosensor and target strands within the coacervate, thereby increasing their local concentration. Using the well-established polyarginine (R) - ATP coacervate system and an energy transfer-based DNA molecular beacon we observed three key improvements: i) a greater than 20-fold reduction of the limit of detection within coacervates when compared to control buffer solutions; ii) an increase in the kinetics, equilibrium was reached more than 4-times faster in coacervates; and iii) enhancement in the dye fluorescent quantum yields within the coacervates, resulting in greater signal-to-noise. The observed benefits translate into coacervates greatly improving bioassay functionality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904739 | PMC |
http://dx.doi.org/10.1038/s42004-024-01124-3 | DOI Listing |
Int J Biol Macromol
December 2024
Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China. Electronic address:
Krill oil (KO) exhibits several biological actions, particularly providing distinct advantages for cognitive health in the aged. Nonetheless, its inadequate water solubility, pronounced flavor, and vulnerability to oxidative degradation restrict its utilization in the food sector. Encapsulation provides a solution, and the study of natural, suitable wall materials is crucial.
View Article and Find Full Text PDFGels
December 2024
Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia.
Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin.
View Article and Find Full Text PDFLangmuir
December 2024
Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China.
Polyelectrolyte complex (PEC) hydrogels provide a promising strategy to develop a class of physically cross-linked networks characterized by exceptional toughness and self-healing properties. However, the precise control of the microstructure and the enhancement of mechanical properties still pose challenges in the field of PEC hydrogels. Herein, we propose a strategy to manipulate the structure of PEC with competitively charged surfactant micelles, leveraging the spatially confined surface charge and excluded volume effects to overcome coacervation issues associated with the PEC, thus achieving a simple one-step preparation of macroscopically uniform and tough PEC hydrogels.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
INRAE, Institut Agro, STLO, 65 Rue de Saint Brieuc, F-35042 Rennes, France.
Heteroprotein complex coacervation has potential for a wide range of applications. However, the sensitivity of coacervates to slight changes in physico-chemical conditions may constitute a technological barrier for their development and deserves to be better understood. In this study, the rheological properties of β-lactoglobulin/lactoferrin (βLG/LF) heteroprotein complex coacervates were investigated with respect to narrow changes of temperature (5-40 °C) and ionic strength (0 to 10mM added NaCl).
View Article and Find Full Text PDFMicrolife
December 2024
Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz,28864 Madrid, Spain.
Evolutionary processes acting on populations of organized molecules preceded the origin of living organisms. These prebiotic entities were independently and repeatedly produced [i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!