Insect pollinators, especially bumblebees are rapidly declining from their natural habitat in the mountain and temperate regions of the world due to climate change and other anthropogenic activities. We still lack reliable information about the current and future habitat conditions of bumblebees in the Himalaya. In this study, we used the maximum entropy algorithm for SDM to look at current and future (in 2050 and 2070) suitable habitats for bumblebees in the Himalaya. We found that the habitat conditions in the Himalayan mountain range do not have a very promising future as suitable habitat for most species will decrease over the next 50 years. By 2050, less than 10% of the Himalayan area will remain a suitable habitat for about 72% of species, and by 2070 this number will be raised to 75%. During this time period, the existing suitable habitat of bumblebees will be declined but some species will find new suitable habitat which clearly indicates possibility of habitat range shift by Himalayan bumblebees. Overall, about 15% of the Himalayan region is currently highly suitable for bumblebees, which should be considered as priority areas for the conservation of these pollinators. Since suitable habitats for bumblebees lie between several countries, nations that share international borders in the Himalayan region should have international agreements for comprehensive pollinator diversity conservation to protect these indispensable ecosystem service providers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904386PMC
http://dx.doi.org/10.1038/s41598-024-52340-9DOI Listing

Publication Analysis

Top Keywords

suitable habitat
20
habitat
9
suitable
8
bumblebees
8
himalayan bumblebees
8
current future
8
habitat conditions
8
bumblebees himalaya
8
suitable habitats
8
habitats bumblebees
8

Similar Publications

Conservation and Dynamics of Maize Seed Endophytic Bacteria Across Progeny Transmission.

Microorganisms

November 2024

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.

Maize ( L.) is an important cereal crop species for food, feedstock and industrial material. Maize seeds host a suitable ecosystem for endophytic bacteria, facilitating seed germination and seedling growth.

View Article and Find Full Text PDF

The decline of insects is a global concern, yet identifying the factors behind it remains challenging due to the complexity of potential drivers and underlying processes, and the lack of quantitative historical data on insect populations. This study assesses 92 potential drivers of insect decline in West Germany, where significant declines have been observed. Using data from federal statistical offices and market surveys, the study traces changes in landscape structure and agricultural practices over 33 years.

View Article and Find Full Text PDF

Predicting the Potential Distribution of (Coleoptera: Scarabaeidae) Under Climate Change.

Insects

December 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.

(Jordan, 1898), a beetle species of ecological and ornamental significance, is predominantly found in southern China. With limited dispersal ability, it is classified as a Class 2 protected species in China. In this study, the widely employed maximum entropy (MaxEnt) model and the ensemble Biomod2 model were applied to simulate habitat suitability in China under current environmental conditions based on available distribution data and multiple environmental variables.

View Article and Find Full Text PDF

Invasive alien species often undergo shifts in their ecological niches when they establish themselves in environments that differ from their native habitats. Fisher LaSalle (Hymenoptera: Eulophidae), specifically, has caused huge economic losses to trees in Australia. The global spread of cultivation has allowed to threaten plantations beyond its native habitat.

View Article and Find Full Text PDF

Habitat Suitability of Based on the Optimized MaxEnt Model.

Insects

December 2024

Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China.

, commonly known as the tiger butterfly, is a visually appealing species in the Danaidae family. As it is not currently classified as endangered, it is excluded from key protected species lists at national and local levels, limiting focus on its population and habitat status, which may result in it being overlooked in local butterfly conservation initiatives. Yunnan, characterized by high butterfly diversity, presents an ideal region for studying habitat suitability for , which may support the conservation of regional biodiversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!