A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experts vs. machine - comparison of machine learning to expert-informed prediction of outcome after major liver surgery. | LitMetric

Background: Machine learning (ML) has been successfully implemented for classification tasks (e.g., cancer diagnosis). ML performance for more challenging predictions is largely unexplored. This study's objective was to compare machine learning vs. expert-informed predictions for surgical outcome in patients undergoing major liver surgery.

Methods: Single tertiary center data on preoperative parameters and postoperative complications for elective hepatic surgery patients were included (2008-2021). Expert-informed prediction models were established on 14 parameters identified by two expert liver surgeons to impact on postoperative outcome. ML models used all available preoperative patient variables (n = 62). Model performance was compared for predicting 3-month postoperative overall morbidity. Temporal validation and additional analysis in major liver resection patients were conducted.

Results: 889 patients included. Expert-informed models showed low average bias (2-5 CCI points) with high over/underprediction. ML models performed similarly: average prediction 5-10 points higher than observed CCI values with high variability (95% CI -30 to 50). No performance improvement for major liver surgery patients.

Conclusion: No clinical relevance in the application of ML for predicting postoperative overall morbidity was found. Despite being a novel hype, ML has the potential for application in clinical practice. However, at this stage it does not replace established approaches of prediction modelling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hpb.2024.02.006DOI Listing

Publication Analysis

Top Keywords

major liver
16
machine learning
12
learning expert-informed
8
expert-informed prediction
8
liver surgery
8
patients included
8
postoperative morbidity
8
liver
5
experts machine
4
machine comparison
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!