Background/aim: Ferroptosis refers to an iron-dependent mechanism of regulated cell death that is attributable to lipid peroxidation. Ferroptosis has been documented as a therapeutic target for various solid cancers; nonetheless, its implication in leukemia remains ambiguous. Therefore, this study aimed at investigating the impact of ferroptosis inducers and inhibitors on in vitro leukemia cell line proliferation.
Materials And Methods: Six leukemia cell lines, including acute myeloid leukemia (AML)-derived MV4-11, THP-1, HL-60, and U-937, and T-lymphoblastic leukemia (T-ALL)-derived Jurkat and KOPT-K1 with activating NOTCH1 mutations, were assessed. Erastin, which interrupts cystine uptake and depletes intracellular glutathione, and RAS-selective lethal 3 (RSL3), which suppresses glutathione peroxidase 4 (GPX4), were employed as ferroptosis inducers. Lipid peroxidation-arresting ferrostatin-1 and deferoxamine were used as ferroptosis inhibitors. Cells were cultured with these compounds and cell proliferation was assessed using a colorimetric assay. Additionally, signaling protein expression was monitored using immunoblotting, and the outcome of GPX4 knockdown was evaluated.
Results: Ferroptosis inducers suppressed proliferation in all cell lines except THP-1 for Erastin and THP-1 and Jurkat for RSL3. Although the ferroptosis inhibitors did not affect cell proliferation, they rescued inducer-mediated growth suppression. Ferroptosis inducers impeded MYC and cyclin D3 expression in certain cell lines and NOTCH1 signaling in T-ALL cells. GPX4 knockdown and RSL3 treatment interrupted MYC and cyclin D3 expression, respectively, in four cell lines.
Conclusion: Ferroptosis inducers may serve as potential candidates for novel molecular therapy against AML and T-ALL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21873/anticanres.16895 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!