Orally Administrated Glutamate Restored EAAT1 and 3 Expression Levels Suppressed in 5-Fluorouracil-damaged Intestinal Epithelial Cells.

Anticancer Res

Laboratory of Pharmacology & Pharmacotherapeutics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan

Published: March 2024

Background/aim: 5-Fluorouracil (5-FU) treatment induces intestinal mucositis, with diarrhea as the primary symptom. Mucositis significantly reduces patients' quality of life (QOL). Amino acids such as glutamate are beneficial for treating gastrointestinal disorders; however, the underlying mechanism remains unclear. Therefore, this study aimed to clarify the role of excitatory amino acid transporters (EAATs) in 5-FU-induced intestinal injury.

Materials And Methods: The rat intestinal epithelial cell line (IEC-6) was used to evaluate whether the EAAT inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-PDC) affects 5-FU-induced cytotoxicity. Mice with 5-FU-induced mucositis were used to determine the effects of glutamate on EAATs expression levels.

Results: Treatment with L-trans-PDC suppressed IEC-6 cell growth. It also exacerbated the 5-FU-induced cell growth suppression and increased inflammatory cytokine expression. In addition, mice treated with 5-FU+Glutamate showed higher EAAT1,3 expression than 5-FU only-treated mice.

Conclusion: Decreased EAAT levels worsen intestinal cell damage caused by 5-FU, suppress cell growth, and induce inflammation. This study contributes to the understanding EAAT and its relationship with intestinal mucositis, which can aid in the development of novel preventive strategies for cancer chemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.16909DOI Listing

Publication Analysis

Top Keywords

cell growth
12
intestinal epithelial
8
intestinal mucositis
8
intestinal
6
cell
5
orally administrated
4
administrated glutamate
4
glutamate restored
4
restored eaat1
4
expression
4

Similar Publications

The mammalian Y chromosome is essential for male fertility, but which Y genes regulate spermatogenesis is unresolved. We addressed this by generating 13 Y-deletant mouse models. In , , and deletants, spermatogenesis was impaired.

View Article and Find Full Text PDF

Recent advances in bioengineering have made it possible to develop increasingly complex biological systems to recapitulate organ functions as closely as possible in vitro. Monitoring the assembly and growth of multi-cellular aggregates, micro-tissues or organoids and extracting quantitative information is a crucial but challenging task required to decipher the underlying morphogenetic mechanisms. We present here an imaging platform designed to be accommodated inside an incubator which provides high-throughput monitoring of cell assemblies over days and weeks.

View Article and Find Full Text PDF

Simultaneous Induction of Immunogenic Pyroptosis and PD-L1 Downregulation by One Single Photosensitizer for Synergistic Cancer Photoimmunotherapy.

J Med Chem

January 2025

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China.

Pyroptosis, an excellent form of immunogenic cell death that can effectively activate antitumor immune responses, is attracting considerable interest as a promising approach for cancer immunotherapy. Immunogenic pyroptosis can recruit and stimulate dendritic cells to provoke further activation and tumor infiltration of T cells by releasing danger-associated molecular patterns, thus improving the tumor response to PD-1/PD-L1 checkpoint blockade immunotherapy. Here, we report the discovery of a bifunctional photosensitizer Nile Violet that can simultaneously trigger caspase-3/GSDME-mediated immunogenic pyroptosis and PD-L1 downregulation for cancer photoimmunotherapy.

View Article and Find Full Text PDF

Objectives: Pancreatic cancer, a highly invasive and prognostically unfavorable malignant tumor, consistently exhibits resistance to conventional chemotherapy, leading to substantial side effects and diminished patient quality of life. This highlights the critical need for the discovery of novel, effective, and safe chemotherapy drugs. This study aimed to explore bioactive compounds, particularly natural products, as an alternative for JAK2 protein inhibitor in cancer treatment.

View Article and Find Full Text PDF

CPSF1 inhibition promotes widespread use of intergenic polyadenylation sites and impairs glycolysis in prostate cancer cells.

Cell Rep

January 2025

Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

Localized prostate cancer can be cured by radiation or surgery, but advanced prostate cancer continues to be a clinical challenge. Altered alternative polyadenylation occurs in numerous cancers and can downregulate tumor-suppressor genes and upregulate oncogenes. We found that the cleavage and polyadenylation specificity factor (CPSF) complex factor CPSF1 is upregulated in patients with advanced prostate cancer, with high CPSF1 expression correlating with worse progression-free survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!