Major challenge in biorefineries is the use of all lignocellulosic components, particularly lignins. In this study, Thermobacillus xylanilyliticus grew on kraft lignin, steam-exploded and native wheat straws produced different sets of phenoloxidases and xylanases, according to the substrate. After growth, limited lignin structural modifications, mainly accompanied by a decrease in phenolic acids was observed by Nuclear Magnetic Resonance spectroscopy. The depletion of p-coumaric acid, vanillin and p-hydroxybenzaldehyde combined to vanillin production in the culture media indicated that the bacterium can transform some phenolic compounds. Proteomic approaches allowed the identification of 29 to 33 different hemicellulases according to the substrates. Twenty oxidoreductases were differentially expressed between kraft lignin and steam-exploded wheat straw. These oxidoreductases may be involved in lignin and aromatic compound utilization and detoxification. This study highlights the potential value of Thermobacillus xylanilyticus and its enzymes in the simultaneous valorization of hemicellulose and phenolic compounds from lignocelluloses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.130507 | DOI Listing |
Bioresour Technol
April 2024
Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France; Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France. Electronic address:
Major challenge in biorefineries is the use of all lignocellulosic components, particularly lignins. In this study, Thermobacillus xylanilyliticus grew on kraft lignin, steam-exploded and native wheat straws produced different sets of phenoloxidases and xylanases, according to the substrate. After growth, limited lignin structural modifications, mainly accompanied by a decrease in phenolic acids was observed by Nuclear Magnetic Resonance spectroscopy.
View Article and Find Full Text PDFBioelectrochemistry
April 2024
Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, ICBMS (Institut de Chimie et Biochimie Moléculaires et Supramoléculaires), F-69622, Villeurbanne, France. Electronic address:
Lignin is the most important natural source of aromatic compounds. The valorisation of lignin into aromatics requires fractionation steps that can be catalysed by ligninolytic enzymes. However, one of the main limitations of biological lignin fractionation is the low efficiency of biocatalysts; it is therefore crucial to enhance or to identify new ligninolytic enzymes.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2023
Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France.
Lignocellulosic biomass is rich in lignins, which represent a bottomless natural source of aromatic compounds. Due to the high chemical complexity of these aromatic polymers, their biological fractionation remains challenging for biorefinery. The production of aromatics from the biological valorization of lignins requires the action of ligninolytic peroxidases and laccases produced by fungi and bacteria.
View Article and Find Full Text PDFFood Chem
March 2023
Manchester Institute of Biotechnology (MIB)& School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; Scotland's Rural College, West Mains Road, King's Buildings, Edinburgh EH9 3JG, United Kingdom. Electronic address:
Ferulic acid has antioxidant properties of interest to the food industry and can be released from natural plant fibres using feruloyl esterases. Esterases active at high temperatures are highly desirable but currently underrepresented. Here we report the biochemical characterization of the feruloyl esterase from Thermobacillus xylanilyticus.
View Article and Find Full Text PDFBioprocess Biosyst Eng
August 2022
Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France.
Thermobacillus xylanilyticus is a thermophilic and hemicellulolytic bacterium of interest for the production of thermostable hemicellulases. Enzymes' production by this bacterium is challenging, because the proliferation of a cheating subpopulation of cells during exponential growth impairs the production of xylanase after serial cultivations. Accordingly, a strategy of successive cultivations with cells transfers in stationary phase and the use of wheat bran and wheat straw as carbon sources were tested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!