Ethnopharmacological Relevance: Banxia Xiexin decoction (BXD) is a classic traditional Chinese medicine prescription for treating ulcerative colitis (UC). However, its potential mechanism of action is still unclear.
Aim Of The Study: Reveal the correlation between the beneficial impacts of BXD on UC and the composition of the gut microbiota.
Materials And Methods: The major constituents of BXD were identified using the HPLC-DAD technique. An experimental model of UC was induced in male C57BL/6 mice by administering dextran sodium sulfate (DSS). A total of 48 mice were divided into different groups, including control, model, high-dose BXD treatment, medium-dose BXD treatment, low-dose BXD treatment, and a group treated with 5-amino acid salicylic acid (5-ASA). Body weight changes and disease activity index (DAI) scores were documented; colon length, colon index, spleen index, and thymus index scores were determined; myeloperoxidase (MPO) and tumor necrosis factor-α (TNF-α) activities were assessed; and histological staining with hematoxylin-eosin and alcian blue/phosphate Schiff was performed. The immunofluorescence technique was employed to examine the presence of ZO-1 and occludin in the colon tissue. 16S rRNA sequencing was employed to assess the gut microbiota's diversity and metabolomics was utilized to examine alterations in metabolites within the gut microbiota. The impact of BXD on the gut microbiota was confirmed through fecal microbiota transplantation (FMT).
Results: BXD exhibited a positive impact on UC mice, particularly in the high-dose BXD treatment group. The BXD group experienced weight recovery, decreased DAI scores, improved colon length, and restored of spleen and thymus index scores compared to the DSS group. Additionally, BXD alleviated colon damage and the inflammatory response while restoring intestinal barrier function. FMT in BXD-treated mice also showed therapeutic effects in UC mice. At the phylum level, the relative abundance of Desulfobacterota, Deferribacterota and Actinobacteriota increased; at the genus level, g__norank__f__Muribaculaceae, Dubosiella, Akkermansia, and Lactobacillus increased, whereas Faecalibaculum, Alloprevotella, Turicibacter, and g_Paraprevotella decreased. g__norank_f__Muribaculaceae was positively correlated with body weight and colon length and negatively with colon index scores, splenic index scores, and MPO levels; Alloprevotella was positively correlated with splenic index scores, histological scores, and TNF-α levels and negatively with thymus index scores and thymus index scores. Faecalibaculum was positively correlated with colon index scores and MPO levels. Metabolic investigations revealed 58 potential indicators, primarily associated with the metabolism of amino acids, purines, and lipids. Alloprevotella, g_Paraprevotella, and Bifidobacterium were strongly associated with metabolic pathways.
Conclusion: BXD showed beneficial therapeutic effects in UC mice. The mechanism may be by promoting the balance and variety of gut microbiota, as well as regulating the metabolism of amino acids, purines, and lipids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2024.117990 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!