Given the widespread presence of Pseudomonas aeruginosa in water and its threat to human health, the metabolic changes in Pseudomonas aeruginosa when exposed to polystyrene microplastics (PS-MPs) exposure were studied, focusing on molecular level. Through non-targeted metabolomics, a total of 64 differential metabolites were screened out under positive ion mode and 44 under negative ion mode. The content of bacterial metabolites changed significantly, primarily involving lipids, nucleotides, amino acids, and organic acids. Heightened intracellular oxidative damage led to a decrease in lipid molecules and nucleotide-related metabolites. The down-regulation of amino acid metabolites, such as L-Glutamic and L-Proline, highlighted disruptions in cellular energy metabolism and the impaired ability to synthesize proteins as a defense against oxidation. The impact of PS-MPs on organic acid metabolism was evident in the inhibition of pyruvate and citrate, thereby disrupting the cells' normal participation in energy cycles. The integration of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that PS-MPs mainly caused changes in metabolic pathways, including ABC transporters, Aminoacyl-tRNA biosynthesis, Purine metabolism, Glycerophospholipid metabolism and TCA cycle in Pseudomonas aeruginosa. Most of the differential metabolites enriched in these pathways were down-regulated, demonstrating that PS-MPs hindered the expression of metabolic pathways, ultimately impairing the ability of cells to synthesize proteins, DNA, and RNA. This disruption affected cell proliferation and information transduction, thus hampering energy circulation and inhibiting cell growth. Findings of this study supplemented the toxic effects of microplastics and the defense mechanisms of microorganisms, in turn safeguarding drinking water safety and human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171335 | DOI Listing |
Mater Today Bio
April 2025
Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China.
Purpose: infection is the most common pathogen in burn wound infections, causing delayed wound healing and progression to chronic wounds. Therefore, there is an urgent need to develop antimicrobial agents that can promote wound healing for effectively treating infected wounds.
Patients And Methods: Using magnetic stirring and ultrasound to synthesize Apt-pM@UCNPmSiO-Cur-CAZ.
BMC Infect Dis
January 2025
Department of Respiratory Medicine, Anting Hospital of Jiading District, 1060 Hejing Road, Anting Town, Jiading District, Shanghai, 201805, China.
Background: Respiratory tract infections (RTIs) are one of the leading causes of morbidity and mortality worldwide. The increase in antimicrobial resistance in respiratory pathogens poses a major challenge to the effective management of these infections.
Objective: To investigate the distribution of major pathogens of RTIs and their antimicrobial resistance patterns in a tertiary care hospital and to develop a mathematical model to explore the relationship between pathogen distribution and antimicrobial resistance.
AMB Express
January 2025
Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
J Oleo Sci
January 2025
Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz, University.
The current study was designed to evaluate the antibacterial, antibiofilm, and biofilm inhibitory potential of six medicinal plants, including Trachyspermum ammi, Trigonella foenum-graecum, Nigella sativa, Thymus vulgaris, Terminalia arjuna, and Ipomoea carneaid against catheter-associated bacteria (CAB). Eighteen CAB were identified up to species level using 16S rRNA gene sequencing, viz., Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology.
Coelomic fluid of earthworms is a valuable source of novel bioactive compounds with therapeutic applications. To gain insight into the bioactive compounds in the coelomic fluid, this study used Perionyx excavatus, a tropical earthworm distinguished for its remarkable ability for regeneration. This study aimed to identify fluorescent bioactive compounds in the coelomic fluid of P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!