Long-term exposure to 6-PPD quinone at environmentally relevant concentrations causes neurotoxicity by affecting dopaminergic, serotonergic, glutamatergic, and GABAergic neuronal systems in Caenorhabditis elegans.

Sci Total Environ

Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China. Electronic address:

Published: April 2024

6-PPD quinone (6-PPDQ), an emerging environmental pollutant, is converted based on 6-PPD via ozonation. However, a systematic evaluation on possible neurotoxicity of long-term and low-dose 6-PPDQ exposure and the underlying mechanism remain unknown. In the present work, 0.1-10 μg/L 6-PPDQ was added to treat Caenorhabditis elegans for 4.5 days, with locomotion behavior, neuronal development, sensory perception behavior, neurotransmitter content, and levels of neurotransmission-related genes being the endpoints. 6-PPDQ exposure at 0.1-10 μg/L significantly reduced locomotion behavior, and that at 1-10 μg/L decreased sensory perception behavior in nematodes. Moreover, 6-PPDQ exposure at 10 μg/L notably induced damage to the development of dopaminergic, glutamatergic, serotonergic, and GABAergic neurons. Importantly, nematodes with chronic 6-PPDQ exposure at 10 μg/L were confirmed to suffer obviously decreased dopamine, serotonin, glutamate, dopamine, and GABA contents and altered neurotransmission-related gene expression. Meanwhile, the potential binding sites of 6-PPDQ and neurotransmitter synthesis-related proteins were further shown by molecular docking method. Lastly, Pearson's correlation analysis showed that locomotion behavior and sensory perception behavior were positively correlated with the dopaminergic, serotonergic, glutamatergic, and GABAergic neurotransmission. Consequently, 6-PPDQ exposure disturbed neurotransmitter transmission, while such changed molecular foundation for neurotransmitter transmission was related to 6-PPDQ toxicity induction. The present work sheds new lights on the mechanisms of 6-PPDQ and its possible neurotoxicity to organisms at environmentally relevant concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.171291DOI Listing

Publication Analysis

Top Keywords

6-ppdq exposure
20
locomotion behavior
12
sensory perception
12
perception behavior
12
6-ppdq
10
6-ppd quinone
8
environmentally relevant
8
relevant concentrations
8
dopaminergic serotonergic
8
serotonergic glutamatergic
8

Similar Publications

Long-Term Exposure to Tire-Derived 6-PPD Quinone Causes Neurotoxicity and Neuroinflammation via Inhibition of HTR2A in C57BL/6 Mice.

Environ Sci Technol

January 2025

School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China.

-(1,3-dimethylbutyl)-'-phenyl--phenylenediamine quinone (6-PPDQ), a novel contaminant derived from tire wear, has raised concerns due to its potential neurotoxicity, yet its long-term effects on mammalian neurological health remain poorly understood. This study investigates the neurotoxic and neuroinflammatory impacts of prolonged 6-PPDQ exposure using male C57BL/6 mice. Behavioral assessments revealed significant cognitive deficits, while biochemical analyses demonstrated increased levels of reactive oxygen species, apoptosis, and blood-brain barrier (BBB) disruption.

View Article and Find Full Text PDF

6-PPD quinone causes lipid accumulation across multiple generations differentially affected by metabolic sensors and components of COMPASS complex in Caenorhabditis elegans.

Environ Pollut

February 2025

Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China. Electronic address:

The toxicity of 6-PPD quinone (6-PPDQ) has been frequently detected. However, the possible transgenerational effects of 6-PPDQ remain largely unclear. Due to short life cycle and high sensitivity to environmental exposure, Caenorhabditis elegans is useful for study of transgenerational toxicology.

View Article and Find Full Text PDF

Quantification and occurrence of 39 tire-related chemicals in urban and rural aerosol from Saxony, Germany.

Environ Int

December 2024

Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; University of Leipzig, Institute for Analytical Chemistry, Linnéstrasse 3, 04103 Leipzig, Germany. Electronic address:

Tire and road wear particles (TRWP) are a major contributor to non-exhaust traffic emissions, but their contribution to and dynamics in urban aerosol is not well known. Urban particulate matter (PM) in the size fraction below 10 µm (PM) from two German cities was collected over 2 weeks and analysed for 39 tire-related chemicals, including amines, guanidines, ureas, benzothiazoles, p-phenylenediamines, quinolines and several transformation products (TPs). Of these, 37 compounds were determined in PM at median concentrations of 212 pg/m for 1,3-diphenylguanidine (DPG) and 132 pg/m for benzothiazole-2-sulfonic acid (BTSA); 10 of the compounds have not been reported in urban aerosol before.

View Article and Find Full Text PDF

Transgenerational response of glucose metabolism in Caenorhabditis elegans exposed to 6-PPD quinone.

Chemosphere

November 2024

Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China. Electronic address:

In Caenorhabditis elegans, 6-PPD quinine (6-PPDQ) could cause several aspects of toxicity together with alteration in glucose metabolism. However, transgenerational alteration in glucose metabolism remains still unknown after 6-PPDQ exposure. In the current study, we further observed transgenerational increase in glucose content induced by 6-PPDQ (1-10 μg/L).

View Article and Find Full Text PDF

Transgenerational intestinal toxicity of 6-PPD quinone in causing ROS production, enhancement in intestinal permeability and suppression in innate immunity in C. elegans.

Environ Pollut

December 2024

Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China. Electronic address:

Toxicity of 6-PPD quinone (6-PPDQ) on organisms at various aspects has been frequently observed at parental generation (P0-G). In contrast, we know little about its possible transgenerational toxicity and underlying mechanisms. In Caenorhabditis elegans, exposure to 6-PPDQ (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!