Cell-type-Specific Chromatin Loops (CSCLs) are crucial for gene regulation and cell fate determination. However, the mechanisms governing their establishment remain elusive. Here, we present SpecLoop, a network regularization-based machine learning framework, to investigate the role of transcription factors (TFs) cooperation in CSCL formation. SpecLoop integrates multi-omics data, including gene expression, chromatin accessibility, sequence, protein-protein interaction, and TF binding motif data, to predict CSCLs and identify TF cooperations. Using high resolution Hi-C data as the gold standard, SpecLoop accurately predicts CSCL in GM12878, IMR90, HeLa-S3, K562, HUVEC, HMEC, and NHEK seven cell types, with the AUROC values ranging from 0.8645 to 0.9852 and AUPR values ranging from 0.8654 to 0.9734. Notably SpecLoop demonstrates improved accuracy in predicting long-distance CSCLs and identifies TF complexes with strong predictive ability. Our study systematically explores the TFs and TF pairs associated with CSCL through effective integration of diverse omics data. SpecLoop is freely available at https://github.com/AMSSwanglab/SpecLoop.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.108182 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong.
Despite numerous studies of water structures at the two-dimensional water-solid interfaces, much less is known about the phase behaviors of water at the one-dimensional (1D) liquid-solid interface. In this work, the 1D interfacial water phase behavior on the outer surface of carbon nanotube-like (CNT-like) models is studied by tuning the Lennard-Jones potential parameter ε of the surface atoms at various temperatures. Extensive molecular dynamics simulations show that ice nanotubes (INTs) can be spontaneously formed on CNT-like model surfaces without nanoconfinement.
View Article and Find Full Text PDFJ Cardiovasc Med (Hagerstown)
February 2025
Cardiology Unit, Azienda Ospedaliera Universitaria di Ferrara, Cona, Ferrara, Italy.
Introduction: Cardiac amyloidosis typically causes restrictive cardiomyopathy, in which the impairment of diastolic function is dominant. Echocardiography provides prognostic information through some important parameters: left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS). However, LVEF often remains preserved despite disease progression, and GLS is not routinely performed as it is limited by suboptimal image quality.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, United States of America.
Determining COVID-19 vaccination strategies presents many challenges in light of limited vaccination capacity and the heterogeneity of affected communities. Who should be prioritized for early vaccination when different groups manifest different levels of risks and contact rates? Answering such questions often becomes computationally intractable given that network size can exceed millions. We obtain a framework to compute the optimal vaccination strategy within seconds to minutes from among all strategies, including highly dynamic ones that adjust vaccine allocation as often as required, and even with modest computation resources.
View Article and Find Full Text PDFAnesth Analg
January 2025
From the Department of Anesthesiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
Background: Rotational thromboelastometry (ROTEM) is widely used for point-of-care coagulation testing to reduce blood transfusions. Accurate interpretation of ROTEM data is crucial and requires substantial training. This study investigates the inter- and intrarater reliability of ROTEM interpretation among experts and compares their interpretations with a ROTEM-guided algorithm.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!