Individuals with diabetes are at a higher risk of developing foot ulcers. To better understand internal soft tissue loading and potential treatment options, subject-specific finite element (FE) foot models have been used. However, existing models typically lack subject-specific soft tissue material properties and only utilize subject-specific anatomy. Therefore, this study determined subject-specific hindfoot soft tissue material properties from one non-diabetic and one diabetic subject using inverse FE analysis. Each subject underwent cyclic MRI experiments to simulate physiological gait and to obtain compressive force and three-dimensional soft tissue imaging data at 16 phases along the loading-unloading cycles. The FE models consisted of rigid bones and nearly-incompressible first-order Ogden hyperelastic skin, fat, and muscle (resulting in six independent material parameters). Then, calcaneus and loading platen kinematics were computed from imaging data and prescribed to the FE model. Two analyses were performed for each subject. First, the skin, fat, and muscle layers were lumped into a single generic soft tissue material and optimized to the platen force. Second, the skin, fat, and muscle material properties were individually determined by simultaneously optimizing for platen force, muscle vertical displacement, and skin mediolateral bulging. Our results indicated that compared to the individual without diabetes, the individual with diabetes had stiffer generic soft tissue behavior at high strain and that the only substantially stiffer multi-material layer was fat tissue. Thus, we suggest that this protocol serves as a guideline for exploring differences in non-diabetic and diabetic soft tissue material properties in a larger population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2024.112016 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104.
Dorsal closure is a process that occurs during embryogenesis of . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Chungbuk National University College of Medicine, Cheongju, Republic of Korea.
Purpose: We aimed to identify the transcriptomic signatures of soft tissue sarcoma (STS) related to radioresistance and establish a model to predict radioresistance.
Materials And Methods: Nine STS cell lines were cultured. Adenosine triphosphate-based viability was determined 5 days after irradiation with 8 Gy of X-rays in a single fraction.
Otol Neurotol
February 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Donders Center for Neuroscience, Radboud University Medical Center, Radboud University, Nijmegen, the Netherlands.
Objective: To compare the 3-year outcomes of the modified minimally invasive Ponto surgery (m-MIPS) to both the original MIPS (o-MIPS) and linear incision technique with soft tissue preservation (LIT-TP) for inserting bone-anchored hearing implants (BAHIs).
Study Design: Prospective study with three patient groups: m-MIPS, o-MIPS, and LIT-TP.
Setting: Tertiary referral center.
J Craniofac Surg
January 2025
Department of Plastic, Reconstructive, and Aesthetic Surgery, Bilkay Clinic, Izmir, Turkey.
Advanced technology and increasing knowledge about aging faces have combined to create the illusion of thread lifting to replace surgical interventions. However, results that came far beyond expectations led to a heavy suspicion of these tools. However, combined treatments with fillers would have better outcomes with a synergetic effect.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University.
Lipomas are benign soft tissue tumors composed of mature adipocytes, commonly found in subcutaneous tissues. Despite their prevalence in various body regions, they are relatively rare in the oral and maxillofacial regions. This study retrospectively analyzed the clinical and imaging characteristics, as well as the treatment outcomes of 57 patients diagnosed with lipoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!