Facile and selective recognition of sulfonylurea pesticides based on the multienzyme-like activities enhancement of nanozymes combining sensor array.

J Hazard Mater

Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun 130021, PR China. Electronic address:

Published: May 2024

Traditional identification methods based on cholinesterase inhibition are limited to recognizing organic phosphorus and carbamate esters, and their response to sulfonylurea pesticides is weak. Residual sulfonylurea pesticides can pose a threat to human health. So, it is very important to develop an effective, rapid and portable method for sulfonylurea pesticides detection. Herein, we first found that sulfonylurea pesticides have activity-enhancing effects on copper-based nanozymes, and then combined them with the array technology to construct a six-channel sensing array method for selectively identifying sulfonylurea pesticides and detecting total concentration of sulfonylurea pesticides (the limit of detection was 0.03 µg/mL). This method has good selectivity towards sulfonylurea pesticides. In addition, a smartphone-based colorimetric paper sensor analysis method was developed to achieve the on-site detection of the total concentration of sulfonylurea pesticides. And this array can also be used for individual differentiation (1-100 µg/mL). Our work not only investigates the specific responses of copper-based nanozymes to sulfonylurea pesticides, but also develops a simple method that contributes to directly detect sulfonylurea pesticides at the source of pollution, providing insights for further research on sulfonylurea pesticides detection and filling the gap in pesticide residue studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.133847DOI Listing

Publication Analysis

Top Keywords

sulfonylurea pesticides
48
sulfonylurea
12
pesticides
12
pesticides detection
8
copper-based nanozymes
8
total concentration
8
concentration sulfonylurea
8
method
5
facile selective
4
selective recognition
4

Similar Publications

Herbicide application to plants heterozygous for herbicide resistance results in distorted segregation favoring resistant allele transmission resulting in a conditional gene drive. Brassica napus plants heterozygous for an allele conferring sulfonylurea resistance at a single locus exhibit normal Mendelian inheritance. However, following application of the herbicide, highly distorted segregation of herbicide resistance occurs among progeny.

View Article and Find Full Text PDF

Bensulfuron-methyl (BSM), a widely used herbicide, can persist in soil and damag sensitive crops. Microbial degradation, supplemented with exogenous additives, provides an effective strategy to enhance BSM breakdown. Hansschlegelia zhihuaiae S113 has been shown to efficiently degrade this sulfonylurea herbicide.

View Article and Find Full Text PDF

Fructose-1,6-bisphosphatase (FBPase) has attracted substantial interest as a target associated with cancer and type II diabetes. FBPase inhibitors targeting the AMP allosteric site have been documented, but their limited selectivity has raised concerns about adverse effects. To address this issue, we designed the affinity/covalent-bond dual-driven inhibitors based on the pharmacophore knowledge of the AMP pocket and neighboring cysteine residue (C179) of FBPase using the cysteine-targeting reactivity warhead screen followed by a structural optimization strategy.

View Article and Find Full Text PDF

Removal of chlorimuron-ethyl from the environment: The significance of microbial degradation and its molecular mechanism.

Chemosphere

October 2024

National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

Chlorimuron-ethyl is a selective pre- and post-emergence herbicide, which is widely used to control broad-leaved weeds in soybean fields. However, herbicide residues have also increased as a result of the pervasive use of chlorimuron-ethyl, which has become a significant environmental concern. Consequently, the removal of chlorimuron-ethyl residues from the environment has garnered significant attention in recent decades.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to determine the effectiveness of the new-user design in pharmacoepidemiological research by examining the interaction between sulfonylureas and warfarin and its impact on severe hypoglycemia.
  • Researchers analyzed data from patients in the UK's Clinical Practice Research Datalink between 1998 and 2020, matching patients using both medications with those using sulfonylureas alone.
  • Results indicated no significant increase in the risk of severe hypoglycemia for patients taking both sulfonylureas and warfarin, suggesting that the new-user design is a viable method for studying drug-drug interactions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!