Osteoglossiformes (bonytongue fishes) possess many morphological specializations associated with functions such as airbreathing, feeding, and electroreception. The olfactory organ also varies among species, notably in the family Osteoglossidae. Herein, we describe the olfactory organ of an osteoglossid, Heterotis niloticus, to compare it with the olfactory organs of other osteoglossiforms. We demonstrate the presence of an olfactory rosette within the olfactory chamber. This structure consists of a short median raphe surrounded by olfactory lamellae, which possess dorsal lamellar processes. On the surface of the olfactory lamellae, there are secondary lamellae formed by the olfactory epithelium. Within the olfactory epithelium, two zones can be distinguished: parallel brands of sensory cells located in the cavities between the secondary lamellae and a nonsensory area covering the remaining part of the olfactory lamellae. The olfactory epithelium is formed by ciliated and microvillus olfactory sensory neurons, supporting cells, goblet cells, basal cells and ciliated nonsensory cells. Additionally, rodlet cells were observed. The results confirm large variability in terms of the olfactory organ of Osteoglossiformes, particularly of Osteoglossidae, and support the secondary lamellae evolution hypothesis within this family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.zool.2024.126156 | DOI Listing |
BMC Public Health
December 2024
College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
Background: Post-COVID-19 syndrome refers to a variety of symptoms that affect different organs in the body and can persist 28 days following exposure to COVID-19. Previous studies have shown that COVID-19 affects not only elderly individuals but also young adults. However, the influence of post-COVID-19 syndrome on young adults has not been studied sufficiently.
View Article and Find Full Text PDFCurr Biol
December 2024
Department of Neurobiology, University of Utah, 20 S 2030 E, BPRB 490D, Salt Lake City, UT 84112, USA. Electronic address:
Integrative studies of diverse neuronal networks that govern social behavior are hindered by a lack of methods to record neural activity comprehensively across the entire brain. The recent development of the miniature fish Danionella cerebrum as a model organism offers one potential solution, as the small size and optical transparency of these animals make it possible to visualize circuit activity throughout the nervous system. Here, we establish the feasibility of using Danionella as a model for social behavior and socially reinforced learning by showing that adult fish exhibit strong affiliative tendencies and that social interactions can serve as the reinforcer in an appetitive conditioning paradigm.
View Article and Find Full Text PDFZoology (Jena)
December 2024
Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain.
The transition between aquatic and terrestrial habitats leads to extreme structural changes in sensorial systems. Olfactory receptors (OR) are involved in the detection of odorant molecules both in water and on land. Therefore, ORs are affected by evolutionary habitat transitions experienced by organisms.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China. Electronic address:
The risk of neonicotinoid insecticides to honeybees is a global issue. Cycloxaprid (CYC) is a novel neonicotinoid insecticide with outstanding activities, good safety profiles, and no cross-resistance with other neonicotinoids. Information on the environmental risks of CYC is limited, especially its effects on honeybees.
View Article and Find Full Text PDFAppl Microsc
December 2024
Department of Science Education, Jeonju National University of Education, Jeonju, 55101, Republic of Korea.
The olfactory organ of Synechogobius hasta was investigated with a focus on its environmental adaptation, using stereo microscopy and light microscopy. This research revealed the following anatomical and histological characteristics: (i) tubular anterior nostril, (ii) one longitudinal lamella, (iii) two accessory nasal sacs, (iv) lymphatic cells in the lower part of the sensory epithelium, (v) four to five villi of olfactory receptor neurons, (vi) abundant blood capillaries beneath the sensory epithelium, and (vii) rod-shaped erythrocytes. These findings hint that the olfactory organ of S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!