Adaptive responses to abiotic stresses such as soil acidity in Eucalyptus-the most widely planted broad-leaf forest genus globally-are poorly understood. This is particularly evident in physiological and anatomical disorders that inhibit plant development and wood quality. We aimed to explore how the supply of Ca and Mg through liming (lime), combined with Cu and Zn fertilization (CZF), influences physiological and anatomical responses during Eucalyptus grandis seedlings growth in tropical acid soil. Therefore, related parameters of leaf area and leaf anatomy, stomatal size, leaf gas exchange, antioxidant system, nutrient partitioning, and biomass allocation responses were monitored. Liming alone in Eucalyptus increased specific leaf area, stomatal density on the abaxial leaf surface, and Ca and Mg content. Also, Eucalyptus exposed only to CZF increased Cu and Zn content. Lime and CZF increased leaf blade and adaxial epidermal thickness, and improved the structural organization of the spongy mesophyll, promoting increased net CO assimilation, and stomatal conductance. Fertilization with Ca, Mg, Cu, and Zn positively affects plant nutrition, light utilization, photosynthetic rate, and antioxidant performance, improving growth. Our results indicate that lime and CZF induce adaptive responses in the physiological and anatomical adjustments of Eucalyptus plantation, thereby promoting biomass accumulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2024.108446 | DOI Listing |
Physiol Rev
January 2025
Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland.
Physical activity is a meaningful part of life, which starts before birth and lasts until death. There are many health benefits to be derived from physical activity, hence, regular engagement is recommended on a weekly basis. However, these recommendations are often not met.
View Article and Find Full Text PDFOrthod Craniofac Res
January 2025
Sleep Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
Objectives: This non-randomised clinical study aimed to identify the phenotypic characteristics that distinguish responders from non-responders. Additionally, it sought to establish a predictive model for treatment response to obstructive sleep apnoea (OSA) using mandibular advancement devices (MAD), based on the analysed phenotypic characteristics.
Material And Methods: This study, registered under identifier NCT05596825, prospectively analysed MAD treatment over 6 years using two-piece adjustable appliances according to a standardised protocol.
Physiol Plant
January 2025
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China.
Populus tree species are commonly used for creating shelter forests in vast areas of northern China, at least partially due to their fast growth. However, they are facing severe problems of decline and mortality caused by drought. In contrast, tree species native to water-limited environments usually have slow growth and are currently not commonly used in afforestation, while these species are gaining more attention in forestry for their greater resilience to drought.
View Article and Find Full Text PDFBrain Sci
January 2025
Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA.
Introduction: The cerebellum is a common lesion site in persons with multiple sclerosis (PwMS). Physiologic and anatomic studies have identified a topographic organization of the cerebellum including functionally distinct motor and cognitive areas. In this study, a recent parcellation algorithm was applied to a sample of PwMS and healthy controls to examine the relationships among specific cerebellar regions, fall status, and common clinical measures of motor and cognitive functions.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington Kentucky, USA.
Objective: Therapeutic translation is challenging in spinal cord injury (SCI) and large animal models with high clinical relevance may accelerate therapeutic development. Pigs have important anatomical and physiological similarities to humans. Intraspinal inflammation mediates SCI pathophysiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!