Structural and electrochemical properties of bismuth ferrite nanostructures produced by pulsed laser deposition with various morphologies are reported. The nanostructures are also explored as electrode materials for high-performance supercapacitors. Scanning electron microscopy images revealed that various bismuth ferrite morphologies were produced by varying the background pressure (10, 0.01, 0.10, 0.25, 0.50, 1.0, 2.0 and 4.0 Torr) in the deposition chamber and submitting them to a thermal treatment after deposition at 500C. The as-deposited bismuth ferrite nanostructures range from very compact thin-film (10, 0.01, 0.10 Torr), to clustered nanoparticles (0.25, 0.50, 1.0 Torr), to very dispersed arrangement of nanoparticles (2.0 and 4.0 Torr). The electrochemical characteristic of the electrodes was investigated through cyclic voltammetry process. The increase in the specific surface area of the nanostructures as background pressure in the chamber increases does not lead to an increase in interfacial capacitance. This is likely due to the wakening of electrical contact between nanoparticles with increasing porosity of the nanostructures. The thermal treatment increased the contact between nanoparticles, which caused an increase in the interfacial capacitance of the nanostructure deposited under high background pressure in the chamber.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ad2ee1DOI Listing

Publication Analysis

Top Keywords

bismuth ferrite
16
ferrite nanostructures
12
background pressure
12
pulsed laser
8
laser deposition
8
structural electrochemical
8
electrochemical properties
8
001 010
8
025 050
8
050 torr
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!