A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enzyme/pH Dual-Responsive Engineered Nanoparticles for Improved Tumor Immuno-Chemotherapy. | LitMetric

Combining immune checkpoint blockade (ICB) therapy with chemotherapy can enhance the efficacy of ICB and expand its indications. However, the limited tumor specificity of chemotherapy drugs results in severe adverse reactions. Additionally, the low tissue penetration and immune-related adverse events associated with monoclonal antibodies restrict their widespread application. To address challenges faced by traditional combination therapies, we design a dual-responsive engineered nanoparticle based on ferritin (denoted as CMFn@OXA), achieving tumor-targeted delivery and controlled release of the anti-PD-L1 peptide CLP002 and oxaliplatin (OXA). Our results demonstrate that CMFn@OXA not only exhibits tumor-specific accumulation but also responds to matrix metalloproteinase-2/9 (MMP-2/9), facilitating the controlled release of CLP002 to block PD-1/PD-L1 interaction. Simultaneously, it ensures the precise delivery of the OXA to tumor cells and its subsequent release within the acidic environment of lysosomes, thereby fostering a synergistic therapeutic effect. Compared to traditional combination therapies, CMFn@OXA demonstrates superior performance in inhibiting tumor growth, extending the survival of tumor-bearing mice, and exhibiting excellent biocompatibility. Collectively, our results highlight CMFn@OXA as a novel and promising strategy in the field of cancer immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c18348DOI Listing

Publication Analysis

Top Keywords

dual-responsive engineered
8
traditional combination
8
combination therapies
8
controlled release
8
enzyme/ph dual-responsive
4
engineered nanoparticles
4
nanoparticles improved
4
tumor
4
improved tumor
4
tumor immuno-chemotherapy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!