Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Combining immune checkpoint blockade (ICB) therapy with chemotherapy can enhance the efficacy of ICB and expand its indications. However, the limited tumor specificity of chemotherapy drugs results in severe adverse reactions. Additionally, the low tissue penetration and immune-related adverse events associated with monoclonal antibodies restrict their widespread application. To address challenges faced by traditional combination therapies, we design a dual-responsive engineered nanoparticle based on ferritin (denoted as CMFn@OXA), achieving tumor-targeted delivery and controlled release of the anti-PD-L1 peptide CLP002 and oxaliplatin (OXA). Our results demonstrate that CMFn@OXA not only exhibits tumor-specific accumulation but also responds to matrix metalloproteinase-2/9 (MMP-2/9), facilitating the controlled release of CLP002 to block PD-1/PD-L1 interaction. Simultaneously, it ensures the precise delivery of the OXA to tumor cells and its subsequent release within the acidic environment of lysosomes, thereby fostering a synergistic therapeutic effect. Compared to traditional combination therapies, CMFn@OXA demonstrates superior performance in inhibiting tumor growth, extending the survival of tumor-bearing mice, and exhibiting excellent biocompatibility. Collectively, our results highlight CMFn@OXA as a novel and promising strategy in the field of cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c18348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!