The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sources for x-ray diffraction studies. We developed a CFCOOH/CFCHNH protocol to harvest single-crystal COFs within 1 to 2 days with crystal sizes of up to 150 microns. The generality was exemplified by the feasible growth of 16 high-quality single-crystal COFs that were structurally determined by laboratory single-crystal x-ray diffraction with resolutions of up to 0.79 angstroms. The structures obtained included uncommon interpenetration of networks, and the details of the structural evolution of conformational isomers and host-guest interaction could be determined at the atomic level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adk8680 | DOI Listing |
J Chem Theory Comput
January 2025
State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.
With the advancement of high harmonic generation and X-ray free-electron lasers (XFELs) to the attosecond domain, the studies of the ultrafast electron and spin dynamics became possible. Yet, the methods for efficient control and measurement of the quantum state are to be further developed. In this publication, we propose using magnetic X-ray scattering (MXS) for resolving the molecular spin-state dynamics and establish a complete protocol to simulate MXS diffraction patterns in molecules with ab initio quantum chemistry based on the multiconfigurational method.
View Article and Find Full Text PDFChem Asian J
January 2025
Charotar University of Science and Technology, Physical Science, P.D. Patel Institute of Applied Sciences, 388421, Changa, INDIA.
The primary obstacle in electrolyzing water is that prolonged large-current operation quickly degrades performance, making it difficult to achieve efficient and continuous hydrogen evolution at high current densities. This work prepared sulfur-doped nickel ferrite nanocomposites using the simple hydrothermal method to improve electrocatalytic green hydrogen production at high-current densities. X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to analyze the crystalline structure, morphology, and chemical composition of the synthesized nanocomposites.
View Article and Find Full Text PDFACS Appl Polym Mater
December 2024
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.
The transition from insulator to electro-responsive has been successfully achieved by earlier studies for some inorganic materials by applying external stimuli that modify their 3D and/or electronic structures. In the case of insulating polymers, this transition is frequently accomplished by mixing them with other electroactive materials, even though a few physical treatments that induce suitable chemical modifications have also been reported. In this work, a smart approach based on the application of an electro-thermal reorientation process followed by a charged gas activation treatment has been developed for transforming insulating 3D printed polymers into electro-responsive materials.
View Article and Find Full Text PDFFront Chem
December 2024
Department of Chemistry, University of Wyoming, Laramie, WY, United States.
Covalent integration of polymers and porous organic frameworks (POFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), represent a promising strategy for overcoming the existing limitations of traditional porous materials. This integration allows for the combination of the advantages of polymers, i.e.
View Article and Find Full Text PDFACS Appl Opt Mater
December 2024
Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
Short-wave infrared (SWIR) phosphor-converted light-emitting diode (LED) technology holds promise for advancing broadband light sources. Despite the potential, limited research has delved into the energy transfer mechanism from sharp-line to broadband emission in SWIR phosphors, which remains underexplored. Herein, we demonstrate bright SWIR phosphors achieved through Cr/Ni energy transfer in LiGaAl O.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!