Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Riverine ecosystems have adapted to natural discharge variations across seasons. However, evidence suggesting that climate change has already impacted magnitudes of river flow seasonality is limited to local studies, mainly focusing on changes of mean or extreme flows. This study introduces the use of apportionment entropy as a robust measure to assess flow-volume nonuniformity across seasons, enabling a global analysis. We found that ~21% of long-term river gauging stations exhibit significant alterations in seasonal flow distributions, but two-thirds of these are unrelated to trends in annual mean discharge. By combining a data-driven runoff reconstruction with state-of-the-art hydrological simulations, we identified a discernible weakening of river flow seasonality in northern high latitudes (above 50°N), a phenomenon directly linked to anthropogenic climate forcing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adi9501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!