Peptidoglycan (PG) is a protective sac-like exoskeleton present in most bacterial cell walls. It is a large, covalently crosslinked mesh-like polymer made up of many glycan strands cross-bridged to each other by short peptide chains. Because PG forms a continuous mesh around the bacterial cytoplasmic membrane, opening the mesh is critical to generate space for the incorporation of new material during its expansion. In Escherichia coli, the 'space-making activity' is known to be achieved by cleavage of crosslinks between the glycan strands by a set of redundant PG endopeptidases whose absence leads to rapid lysis and cell death. Here, we demonstrate a hitherto unknown role of glycan strand cleavage in cell wall expansion in E. coli. We find that overexpression of a membrane-bound lytic transglycosylase, MltD that cuts the glycan polymers of the PG sacculus rescues the cell lysis caused by the absence of essential crosslink-specific endopeptidases, MepS, MepM and MepH. We find that cellular MltD levels are stringently controlled by two independent regulatory pathways; at the step of post-translational stability by a periplasmic adaptor-protease complex, NlpI-Prc, and post-transcriptionally by RpoS, a stationary-phase specific sigma factor. Further detailed genetic and biochemical analysis implicated a role for MltD in cleaving the nascent uncrosslinked glycan strands generated during the expansion of PG. Overall, our results show that the combined activity of PG endopeptidases and lytic transglycosylases is necessary for successful expansion of the cell wall during growth of a bacterium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10931528PMC
http://dx.doi.org/10.1371/journal.pgen.1011161DOI Listing

Publication Analysis

Top Keywords

glycan strands
12
glycan strand
8
strand cleavage
8
lytic transglycosylase
8
transglycosylase mltd
8
escherichia coli
8
cell wall
8
glycan
6
expansion
5
cell
5

Similar Publications

Rotaviruses, non-enveloped viruses with a double-stranded RNA genome, are the leading etiological pathogen of acute gastroenteritis in young children and animals. The P[11] genotype of rotaviruses exhibits a tropism for neonates. In the present study, a binding assay using synthetic oligosaccharides demonstrated that the VP8* protein of P[11] porcine rotavirus (PRV) strain 4555 binds to lacto-N-neotetraose (LNnT) with the sequence Galβ1,4-GlcNAcβ1,3-Galβ1,4-Glc, one of the core parts of histo-blood group antigen (HBGA) and milk glycans.

View Article and Find Full Text PDF

Structural and functional snapshots of a broad-specificity endoglucanase from Thermogutta terrifontis for biomass saccharification.

Arch Biochem Biophys

December 2024

The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK. Electronic address:

Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C.

View Article and Find Full Text PDF

This study aimed to investigate the biological activity of crude and purified laminarin and fucoidan samples extracted from Irish brown macroalgae species and . The antioxidant capacity of the samples was evaluated using the 2,2-diphenyl-1-picrylhydrazyl and ferric-reducing antioxidant power assays. The anti-inflammatory potential of the samples was analysed using the cyclooxygenases inhibition activity, and the antidiabetic activity was evaluated using a dipeptidyl peptidase-4 inhibitor screening assay.

View Article and Find Full Text PDF

The significant economic losses caused by in donkey husbandry have increased interest in exploring the potential of phages and their enzymes as control strategies. In this study, a phage, designated 4FS1, was isolated from sewage at a donkey farm. Transmission electron microscopy (TEM) revealed a typical icosahedral head and a long, non-contractile tail.

View Article and Find Full Text PDF

NMR studies of amyloid interactions.

Prog Nucl Magn Reson Spectrosc

December 2024

Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom. Electronic address:

Amyloid fibrils are insoluble, fibrous nanostructures that accumulate extracellularly in biological tissue during the progression of several human disorders, including Alzheimer's disease (AD) and type 2 diabetes. Fibrils are assembled from protein monomers via the transient formation of soluble, cytotoxic oligomers, and have a common molecular architecture consisting of a spinal core of hydrogen-bonded protein β-strands. For the past 25 years, NMR spectroscopy has been at the forefront of research into the structure and assembly mechanisms of amyloid aggregates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!