The evaluation of the structural integrity of mechanically dynamic organs such as lungs is critical for the diagnosis of numerous pathologies and the development of therapies. This task is classically performed by histology experts in a qualitative or semi-quantitative manner. Automatic digital image processing methods appeared in the last decades, and although immensely powerful, tools are highly specialized and lack the versatility required in various experimental designs. Here, a set of scripts for the image processing software ImageJ/Fiji to easily quantify fibrosis extend and alveolar airspace availability in Sirius Red or Masson's trichrome stained samples is presented. The toolbox consists in thirteen modules: sample detection, particles filtration (automatic and manual), border definition, air ducts identification, air ducts walls definition, parenchyma extraction, MT-staining specific pre-processing, fibrosis detection, fibrosis particles filtration, airspace detection, and visualizations (tissue only or tissue and airspace). While the process is largely automated, critical parameters are accessible to the user for increased adaptability. The modularity of the protocol allows for its adjustment to alternative experimental settings. Fibrosis and airspace can be combined as an evaluation of the structural integrity of the organ. All settings and intermediate states are saved to ensure reproducibility. These new analysis scripts allow for a rapid quantification of fibrosis and airspace in a large variety of experimental settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903859 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298015 | PLOS |
Transplant Direct
March 2024
Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
Background: The noninvasive detection of subclinical graft injury including subclinical T cell-mediated rejection (subTCMR) is one of the unresolved challenges after liver transplantation. Recently, serum C-X-C motif chemokine ligand 8 (CXCL8) was proposed as a highly accurate marker of subTCMR in pediatric liver transplant recipients. We aimed to evaluate the accuracy of the quantification of this chemokine for predicting subTCMR in adult liver transplant recipients, as well as its capacity to classify patients who could benefit from immunosuppression reduction.
View Article and Find Full Text PDFRadiology
January 2025
From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.).
Background Photoacoustic microscopy (PAM) can be used to detect strong absorption from endogenous and exogenous contrast material, making it promising for detailed structural and functional imaging of hepatic sinusoids, including dynamic visualization of permeability. Purpose To evaluate whether PAM-based quantitative parameters of liver function and integrity (lacunarity, blood oxygen saturation [Sao], and Evans blue [EB] permeability) are associated with histopathologic indexes of fibrosis in a mouse model. Materials and Methods Between October 2022 and July 2023, a total of 35 male C57BL/6 mice were included in this study and received intraperitoneal injection of carbon tetrachloride to establish mouse models of progressive liver fibrosis, with seven mice in each group.
View Article and Find Full Text PDFRespir Res
January 2025
National Heart and Lung Institute, Imperial College London, London, UK.
Background: Systemic sclerosis (SSc) is a rare connective tissue disease associated with rapidly evolving interstitial lung disease (ILD), driving its mortality. Specific imaging-based biomarkers associated with the evolution of lung disease are needed to help predict and quantify ILD.
Methods: We evaluated the potential of an automated ILD quantification system (icolung) from chest CT scans, to help in quantification and prediction of ILD progression in SSc-ILD.
Sci Rep
January 2025
Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China.
A major histologic feature of cirrhosis is the loss of liver architecture with collapse of tissue and vascular changes per unit. We developed qVessel to quantify the arterial density (AD) in liver biopsies with chronic disease of varied etiology and stage. 46 needle liver biopsy samples with chronic hepatitis B (CHB), 48 with primary biliary cholangitis (PBC) and 43 with metabolic dysfunction-associated steatotic liver disease (MASLD) were collected at the Shuguang Hospital.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory, Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
Increased activity of acid sphingomyelinase (ASMase) has been linked to diabetes and organ fibrosis. Nevertheless, the precise influence of ASMase on diabetic myocardial fibrosis and the corresponding molecular mechanisms remain elusive. In this study, we aim to elucidate whether ASMase contributes to diabetic myocardial fibrosis through the phosphorylation mediated by MAPK, thereby culminating in the development of diabetic cardiomyopathy (DCM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!