Humans respond more quickly with the left hand to a small stimulus, and with the right hand to a large stimulus, as compared to the reverse mapping (spatial-size association of response codes [SSARC] effect). We investigated the hypothesis that strength differences between the hands contribute to the origin of this effect. Therefore, 80 left-handers and 80 right-handers participated in two experiments. In Experiment 1, participants performed a manual choice-response task in which we manipulated the mapping between physical stimulus size and responding hand. In addition, we measured the strengths of participants' left and right effectors (i.e., finger, hand, and arm). In Experiment 2, we measured the SSARC effect in vocal responses of the same sample. There were four main results. First, participants' dominant effectors were stronger than their nondominant effectors. Second, the SSARC effect occurred in manual and vocal responses with similar size. Third, in both modalities, the SSARC effect was larger in right-handers than in left-handers. Finally, strength differences between effectors (fingers and hands) correlated with the size of the SSARC effect. In sum, results support the hypothesis that functional differences between the hands contribute to the origin of the SSARC effect. In addition, the results suggest that size-space associations have generalized across motor systems, and formed a modality-independent association. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/xhp0001185 | DOI Listing |
BMC Biol
January 2025
Department of Biology, Section of Zoophysiology, Aarhus University, Aarhus, 8000, Denmark.
Background: Echolocating bats face an intense arms race with insect prey that can detect bat calls and initiate evasive maneuvers. Their high closing speeds and short biosonar ranges leave bats with only a few 100 ms between detection and capture, suggesting a reactive sensory-motor operation that might preclude tracking of escaping prey. Here we test this hypothesis using greater mouse-eared bats (Myotis myotis) as a model species.
View Article and Find Full Text PDFAudiol Res
January 2025
Otolaryngology Unit, Department of Traslational Medicine and Neuroscience-DiBrain, University of Bari, 70124 Bari, Italy.
Aim: The aim of this study was to assess the subjective experiences of adults with different cochlear implant (CI) configurations-unilateral cochlear implant (UCI), bilateral cochlear implant (BCI), and bimodal stimulation (BM)-focusing on their perception of speech in quiet and noisy environments, music, environmental sounds, people's voices and tinnitus.
Methods: A cross-sectional survey of 130 adults who had undergone UCI, BCI, or BM was conducted. Participants completed a six-item online questionnaire, assessing difficulty levels and psychological impact across auditory domains, with responses measured on a 10-point scale.
Sci Rep
January 2025
Department of Behavioural Ecology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznan, 61614, Poland.
Animals employ various strategies to minimize the overlap of their vocalizations with other sounds, thereby enhancing the effectiveness of their communication. However, little attention has been given to experimentally examining how the structure of the acoustic signal changes in response to various kinds of disturbances in the soundscape. In this study, I experimentally investigated whether male thrush nightingales (Luscinia luscinia) adjust their singing rate, song frequency, and song type in response to different types of artificial sounds.
View Article and Find Full Text PDFJ Neurosci
January 2025
Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239, USA
In everyday hearing, listeners face the challenge of understanding behaviorally relevant foreground stimuli (speech, vocalizations) in complex backgrounds (environmental, mechanical noise). Prior studies have shown that high-order areas of human auditory cortex (AC) pre-attentively form an enhanced representation of foreground stimuli in the presence of background noise. This enhancement requires identifying and grouping the features that comprise the background so they can be removed from the foreground representation.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China.
The current study has revealed a unique sexual selection pattern in , a species renowned for its ultrasonic communication, which differs from the patterns observed in other anuran taxa. Typically, females listen to male vocalizations and exhibit phonotaxis towards preferred traits for mate selection. In contrast, female do not actively approach displaying males for mate selection; instead, they use courtship calls to attract potential mates and incite male competition for access to them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!