Background: The early prediction of antibiotic resistance in patients with a urinary tract infection (UTI) is important to guide appropriate antibiotic therapy selection.

Objective: In this study, we aimed to predict antibiotic resistance in patients with a UTI. Additionally, we aimed to interpret the machine learning models we developed.

Methods: The electronic medical records of patients who were admitted to Yongin Severance Hospital, South Korea were used. A total of 71 features extracted from patients' admission, diagnosis, prescription, and microbiology records were used for classification. UTI pathogens were classified as either sensitive or resistant to cephalosporin, piperacillin-tazobactam (TZP), carbapenem, trimethoprim-sulfamethoxazole (TMP-SMX), and fluoroquinolone. To analyze how each variable contributed to the machine learning model's predictions of antibiotic resistance, we used the Shapley Additive Explanations method. Finally, a prototype machine learning-based clinical decision support system was proposed to provide clinicians the resistance probabilities for each antibiotic.

Results: The data set included 3535, 737, 708, 1582, and 1365 samples for cephalosporin, TZP, TMP-SMX, fluoroquinolone, and carbapenem resistance prediction models, respectively. The area under the receiver operating characteristic curve values of the random forest models were 0.777 (95% CI 0.775-0.779), 0.864 (95% CI 0.862-0.867), 0.877 (95% CI 0.874-0.880), 0.881 (95% CI 0.879-0.882), and 0.884 (95% CI 0.884-0.885) in the training set and 0.638 (95% CI 0.635-0.642), 0.630 (95% CI 0.626-0.634), 0.665 (95% CI 0.659-0.671), 0.670 (95% CI 0.666-0.673), and 0.721 (95% CI 0.718-0.724) in the test set for predicting resistance to cephalosporin, TZP, carbapenem, TMP-SMX, and fluoroquinolone, respectively. The number of previous visits, first culture after admission, chronic lower respiratory diseases, administration of drugs before infection, and exposure time to these drugs were found to be important variables for predicting antibiotic resistance.

Conclusions: The study results demonstrated the potential of machine learning to predict antibiotic resistance in patients with a UTI. Machine learning can assist clinicians in making decisions regarding the selection of appropriate antibiotic therapy in patients with a UTI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940975PMC
http://dx.doi.org/10.2196/51326DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
20
resistance patients
16
machine learning
16
patients uti
12
tmp-smx fluoroquinolone
12
95%
10
prediction antibiotic
8
resistance
8
patients urinary
8
urinary tract
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!