The expression peak of VcAP1.4, VcAP1.6, VcAP3.1, VcAP3.2, VcAG3, VcFLC2, and VcSVP9 coincided with the endo-dormancy release of flower buds. Additionally, GA4 not only increased the expression of these genes but also promoted flower bud endo-dormancy release. The MIKC-type MADS-box gene family is involved in the regulation of flower development. A total of 109 members of the MIKC-type MADS-box gene family were identified in blueberry. According to the phylogenetic tree, these 109 MIKC-type MADS-box proteins were divided into 13 subfamilies, which were distributed across 40 Scaffolds. The results of the conserved motif analysis showed that among 20 motifs, motifs 1, 3, and 9 formed the MADS-box structural domain, while motifs 2, 4, and 6 formed the K-box structural domain. The presence of 66 pairs of fragment duplication events in blueberry suggested that gene duplication events contributed to gene expansion and functional differentiation. Additionally, the presence of cis-acting elements revealed that VcFLC2, VcAG3, and VcSVP9 might have significant roles in the endo-dormancy release of flower buds. Meanwhile, under chilling conditions, VcAP3.1 and VcAG7 might facilitate flower bud dormancy release. VcSEP11 might promote flowering following the release of endo-dormancy, while the elevated expression of VcAP1.7 (DAM) could impede the endo-dormancy release of flower buds. The effect of gibberellin (GA) treatment on the expression pattern of MIKC-type MADS-box genes revealed that VcAP1.4, VcAP1.6, VcAP3.1, VcAG3, and VcFLC2 might promote flower bud endo-dormancy release, while VcAP3.2, VcSEP11, and VcSVP9 might inhibit its endo-dormancy release. These results indicated that VcAP1.4, VcAP1.6, VcAP1.7 (DAM), VcAP3.1, VcAG3, VcAG7, VcFLC2, and VcSVP9 could be selected as key regulatory promoting genes for controlling the endo-dormancy of blueberry flower buds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-024-04349-7 | DOI Listing |
Planta
February 2024
State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China.
Plants (Basel)
May 2023
Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), UEIS Biotecnologia e Recursos Genéticos, Estrada de Gil Vaz-Apartado 6, 7350-404 Elvas, Portugal.
Plant Cell Environ
June 2023
Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway.
Perennial para- and endo-dormancy are seasonally separate phenomena. Whereas para-dormancy is the suppression of axillary buds (AXBs) by a growing shoot, endo-dormancy is the short-day elicited arrest of terminal and AXBs. In hybrid aspen (Populus tremula x P.
View Article and Find Full Text PDFDue to a scarcity of relevant data, the ornamental woody flower Franch. is examined in the current study for its low temperature-induced floral bud dormancy (late October-end December) aspect. This study used transcriptome data profiling and co-expression network analyses to identify the interplay between endogenous hormones and bud dormancy phases such as pre-dormancy, para-dormancy, endo-dormancy, eco-dormancy, and dormancy release.
View Article and Find Full Text PDFPlant Sci
March 2022
National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, People's Republic of China. Electronic address:
Development after endo-dormancy release ensures perennial plants, such as forest trees, proper response to environmental changes and enhances their adaptability. In northern hemisphere, megasporophore and microsporophore of conifers undergo dormancy to complete their development. Here combined with transcriptome data, we used high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (ESI-HPLC-MS/MS) to quantitatively analyse the various hormones (Abscisic Acid (ABA), 3-Indoleacetic acid (IAA), Gibberellins (GAs), Cytokinin (CTK), Jasmonic acid (JA) and Salicylic acid (SA)) of Chinese pine (Pinus tabuliformis Carr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!