Background: In α-synucleinopathies, the dysfunction of the autonomic nervous system which typically manifests as orthostatic hypotension (OH) often leads to severe consequences and poses therapeutic challenges. This study aims to discover the brain-cardiac electrophysiological changes in OH patients with α-synucleinopathies using the rapid quantitative electroencephalography (qEEG) coupled with heart rate variability (HRV) technique to identify rapid, noninvasive biomarkers for early warning and diagnosis, as well as shed new light on complementary treatment approaches such as brain stimulation targets.
Methods: In this study, 26 subjects of α-synucleinopathies with OH (α-OH group), 21 subjects of α-synucleinopathies without OH (α-NOH group), and 34 healthy controls (control group) were included from September 2021 to August 2023 (NCT05527067). The heart rate-blood pressure variations in supine and standing positions were monitored, and synchronization parameters of seated resting-state HRV coupled with qEEG were collected. Time-domain and frequency-domain of HRV measures as well as peak frequency and power of the brainwaves were extracted. Differences between these three groups were compared, and correlations between brain-heart parameters were analyzed.
Results: The research results showed that the time-domain parameters such as MxDMn, pNN50, RMSSD, and SDSD of seated resting-state HRV exhibited a significant decrease only in the α-OH group compared to the healthy control group (p < 0.05), while there was no significant difference between the α-NOH group and the healthy control group. Several time-domain and frequency-domain parameters of seated resting-state HRV were found to be correlated with the blood pressure changes within the first 5 min of transitioning from supine to standing position (p < 0.05). Differences were observed in the power of beta1 waves (F4 and Fp2) and beta2 waves (Fp2 and F4) in the seated resting-state qEEG between the α-OH and α-NOH groups (p < 0.05). The peak frequency of theta waves in the Cz region also showed a difference (p < 0.05). The power of beta2 waves in the Fp2 and F4 brain regions correlated with frequency-domain parameters of HRV (p < 0.05). Additionally, abnormal electrical activity in the alpha, theta, and beta1 waves was associated with changes in heart rate and blood pressure within the first 5 min of transitioning from supine to standing position (p < 0.05).
Conclusion: Rapid resting-state HRV with certain time-domain parameters below normal levels may serve as a predictive indicator for the occurrence of orthostatic hypotension (OH) in patients with α-synucleinopathies. Additionally, the deterioration of HRV parameters correlates with synchronous abnormal qEEG patterns, which can provide insights into the brain stimulation target areas for OH in α-synucleinopathy patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850923 | PMC |
http://dx.doi.org/10.1111/cns.14571 | DOI Listing |
Europace
January 2025
Department of Clinical Sciences, Lund University, Malmö, Sweden.
Background: Orthostatic hypotension (OH) is an important differential diagnosis in unexplained syncope. Neurogenic OH (nOH) has been postulated to differ from non-neurogenic OH (non-nOH), yet pathophysiological differences are largely unexplored. We aimed to investigate etiology and tilt table test (TTT)-induced hemodynamic responses in symptomatic OH patients.
View Article and Find Full Text PDFJ Formos Med Assoc
January 2025
Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan. Electronic address:
Controlling hypertension has become an important issue in the elderly population in whom neurological comorbidities are highly prevalent. Most of the large-scale trials focusing on hypertension management in older populations have excluded patients with comorbid neurological disorders. However, this population requires special considerations, as the benefits of antihypertensive agents are mostly uncertain and there is a higher risk of adverse events.
View Article and Find Full Text PDFMov Disord Clin Pract
January 2025
TSE/Prion Biochemistry Section, DIR, National Institute of Allergy and Infectious Diseases (NIAID), Hamilton, Montana, USA.
Background: Cerebrospinal fluid (CSF) α-synuclein seeding activity (SSA) via a seed amplification assay might predict central Lewy body diseases (LBD) in at-risk individuals.
Objective: The aim was to assess CSF SSA in a prospective, longitudinal study.
Methods: Participants self-reported risk factors were genetics, olfactory dysfunction, dream enactment behavior, orthostatic intolerance, or hypotension; individuals who had ≥3 confirmed risk factors underwent CSF sampling and were followed for up to 7.
Eur J Prev Cardiol
January 2025
CH Saint Joseph et Saint Luc. Lyon, France.
Due to the aging population, focusing on healthy aging has become a global priority. Cardiovascular diseases (CVDs) and frailty, characterized by increased vulnerability to adverse stress and health events, interact synergistically in advanced age. In older adults, hip fractures are a frequent dramatic "life-transition" event.
View Article and Find Full Text PDFClin Neuropharmacol
January 2025
MedStar Georgetown University Hospital, Washington, DC.
Introduction: Adjunctive therapies to treat OFF episodes resulting from long-term levodopa treatment in Parkinson disease (PD) are hampered by safety and tolerability issues. Istradefylline offers an alternative mechanism (adenosine A2A receptor antagonist) and therefore potentially improved tolerability.
Methods: A systematic review of PD adjuncts published in 2011 was updated to include randomized controlled trials published from January 1, 2010-April 15, 2019.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!