Oxygen dynamic exchange and diffusion characteristics of ZnO nanorods from O MAS NMR.

Chem Commun (Camb)

Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Published: March 2024

Interactions of ZnO nanorods with water and the dynamic migration characteristic of surface oxygen species are important in controlling its structure and catalytic properties. Here, we apply O solid-state NMR spectroscopy to investigate the interactions, as well as oxygen ion diffusion properties of ZnO nanorods under different conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc00279bDOI Listing

Publication Analysis

Top Keywords

zno nanorods
12
oxygen dynamic
4
dynamic exchange
4
exchange diffusion
4
diffusion characteristics
4
characteristics zno
4
nanorods mas
4
mas nmr
4
nmr interactions
4
interactions zno
4

Similar Publications

Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).

View Article and Find Full Text PDF

Role of en-APTAS Membranes in Enhancing the NO Gas-Sensing Characteristics of Carbon Nanotube/ZnO-Based Memristor Gas Sensors.

Biosensors (Basel)

December 2024

Department of Semiconductor Systems Engineering, Convergence Engineering for Intelligent Drone, Institute of Semiconductor and System IC, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.

NO is a toxic gas that can damage the lungs with prolonged exposure and contribute to health conditions, such as asthma in children. Detecting NO is therefore crucial for maintaining a healthy environment. Carbon nanotubes (CNTs) are promising materials for NO gas sensors due to their excellent electronic properties and high adsorption energy for NO molecules.

View Article and Find Full Text PDF

The development of supercapacitors is pivotal for sustainable energy storage solutions, necessitating the advancement of innovative electrode materials to supplant fossil-fuel-based energy sources. Zinc oxide (ZnO) is widely studied for use in supercapacitor electrodes because of its beneficial physicochemical properties, including excellent chemical and thermal stability, semiconducting characteristics, low cost, and environmentally friendly nature. In this study, ZnO nanorods were synthesized using a simple hydrothermal method and then combined with various Ni-based layered double hydroxides (LDHs) [NiM'-LDHs (M' = Mn, Co, and Fe)] to improve the electrochemical performance of the ZnO nanorods.

View Article and Find Full Text PDF

ZnO nanorods have attracted much attention owing to their outstanding properties for chemical gas sensors. Although they show greater sensing properties than conventional nanoparticulate ZnO, high operation temperature (>250-350 °C) is required for them to work even if precious metals are deposited on them to sensitize their sensing properties. Light irradiation is one solution for overcoming the high operation temperature and the gas selectivity because it assists the oxidation activity on the surface that affects the sensor response.

View Article and Find Full Text PDF

In this study, we report a high-performance acetone gas sensor utilizing a bilayer structure composed of a ZnO nanorod top layer and a ZnFeO nanoparticle-decorated ZnO nanorod bottom layer. ZnO nanorods were synthesized via a water-bath method, after which the ZnFeO nanoparticle-decorated ZnO nanorods were prepared using a simple immersion and calcination method. SEM and TEM revealed the porous morphology of the samples and the formation of ZnO-ZnFeO heterojunctions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!