In this study, the authors compared the efficiency of automated robotic and manual injection methods for the CRISPR-RfxCas13d (CasRx) system for mRNA knockdown and Cas9-mediated DNA targeting in zebrafish embryos. They targeted the no tail () gene as a proof-of-principle, evaluating the induced embryonic phenotypes. Both Cas9 and CasRx systems caused loss of function phenotypes for . Cas9 protein exhibited a higher percentage of severe phenotypes compared with mRNA, while CasRx protein and mRNA showed similar efficiency. Both robotic and manual injections demonstrated comparable phenotype percentages and mortality rates. The findings highlight the potential of RNA-targeting CRISPR effectors for precise gene knockdown and endorse automated microinjection at a speed of 1.0 s per embryo as a high-throughput alternative to manual methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2144/btn-2023-0062 | DOI Listing |
JACC Adv
January 2025
Department of Cardiology, University Heart Centre, University Hospital Zürich, Zürich, Switzerland.
Background: Patients in many underserved geographies lack access to invasive coronary angiography (ICA).
Objectives: This preclinical study explored the feasibility of telerobotic ICA between separate continents.
Methods: Using a novel robotic system, attempts were made to navigate a magnetic guidewire and diagnostic catheter from the aortic arch into a target coronary artery ostium in a fluid-filled cardiac model.
Waste Manag
January 2025
ZheJiang University, Department of Mechanical Engineering, ZheJiang, 310000, China.
With the rapid increase in end-of-life smartphones, enhancing the automation and intelligence of their recycling processes has become an urgent challenge. At present, the disassembly of discarded smartphones predominantly relies on manual labor, which is not only inefficient but also associated with environmental pollution and high labor intensity. In the context of end-of-life smartphone recycling, complex situations such as stacking and occlusion are commonly encountered.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
The stable physiological structure and rich vascular network of pig ears contribute to distinct thermal characteristics, which can reflect temperature variations. While the temperature of the pig ear does not directly represent core body temperature due to the ear's role in thermoregulation, thermal infrared imaging offers a feasible approach to analyzing individual pig status. Based on this background, a dataset comprising 23,189 thermal infrared images of pig ears (TIRPigEar) was established.
View Article and Find Full Text PDFACS Mater Lett
January 2025
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States.
Photocurable self-healing elastomers are promising candidates for producing complex soft devices that can mend damage. However, the practicality of these materials is limited by reliance on external stimuli, custom synthesis, manual realignment, and multihour healing cycles. This paper introduces a tough 3D-printable hybrid acrylate/thiol-ene elastomer (prepared with commercially available precursors) that exhibits nearly instantaneous damage repair in the absence of external stimuli.
View Article and Find Full Text PDFIEEE Trans Med Robot Bionics
November 2024
Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
This paper introduces a novel magnetic navigation system for cardiac ablation. The system is formed from two key elements: a magnetic ablation catheter consisting of a chain of spherical permanent magnets; and an actuation system comprised of two cart-mounted permanent magnets undergoing pure rotation. The catheter design enables a large magnetic content with the goal of minimizing the footprint of the actuation system for easier integration with the clinical workflow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!