Negative linear compressibility exhibited by the hybrid perovskite [(NH)C]Er(HCO)(CO).

Chem Commun (Camb)

School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK.

Published: March 2024

Extended framework materials with specific topologies can exhibit unusual mechanical behaviour, such as expanding in one direction under hydrostatic (uniform) pressure, known as negative linear compressibility (NLC). Here, two hybrid perovskite frameworks with winerack structures, a known NLC topology, are investigated under pressure. [C(NH)]Er(HCO)(CO) exhibits NLC from ambient pressure to 2.63(10) GPa and is the first reported NLC hybrid perovskite from ambient pressure. However, isostructural [(CH)NH]Er(HCO)(CO) instead compresses relatively moderately along all axes before it undergoes a phase transition above 0.37(10) GPa. The differences in the mechanical properties can be interpreted from differences in host-guest interactions within these frameworks, primarily their hydrogen bond networks.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cc06208bDOI Listing

Publication Analysis

Top Keywords

hybrid perovskite
12
negative linear
8
linear compressibility
8
nlc hybrid
8
ambient pressure
8
compressibility exhibited
4
exhibited hybrid
4
perovskite [nhc]erhcoco
4
[nhc]erhcoco extended
4
extended framework
4

Similar Publications

We report the synthesis of ethylammonium lead iodide (EAPbI) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large -cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI nanocrystals are highly unstable, evolving to a nonperovskite δ-EAPbI polymorph within 1 day.

View Article and Find Full Text PDF

Orientational Disorder and Molecular Correlations in Hybrid Organic-Inorganic Perovskites: From Fundamental Insights to Technological Applications.

ACS Appl Mater Interfaces

December 2024

Group of Characterization of Materials, Departament de Física, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona 08019, Spain.

Hybrid organic-inorganic perovskites (HOIP) have emerged in recent years as highly promising semiconducting materials for a wide range of optoelectronic and energy applications. Nevertheless, the rotational dynamics of the organic components and many-molecule interdependencies, which may strongly impact the functional properties of HOIP, are not yet fully understood. In this study, we quantitatively analyze the orientational disorder and molecular correlations in archetypal perovskite CHNHPbI (MAPI) by performing comprehensive molecular dynamics simulations and entropy calculations.

View Article and Find Full Text PDF

Tuning the selectivity and improving the activity of photocatalysts are among the main bottlenecks for the conversion of CO to value-added chemicals. Recently, lead-free halide perovskites have been extensively investigated as photocatalysts for the photoreduction of CO. Herein, we report a composite photocatalyst using CsBiCl and Ir/IrO for the photoreduction of CO.

View Article and Find Full Text PDF

Schottky Defects Suppress Nonradiative Recombination in CHNHPbI through Charge Localization.

J Phys Chem Lett

December 2024

College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China.

Hybrid lead halide perovskites are promising materials for photovoltaic applications due to their exceptional optoelectronic properties. Here, we investigate the impact of Schottky defects─specifically PbI(V) and CHNHI (V) vacancies─on nonradiative recombination in CHNHPbI using time-dependent density functional theory and nonadiabatic (NA) molecular dynamics. Our results reveal that Schottky defects do not alter the fundamental bandgap or introduce trap states but instead distort the surrounding lattice, localizing the hole distribution.

View Article and Find Full Text PDF

Two-dimensional (2D) chiral hybrid perovskites A2PbI4 (A: chiral organic ion) enable chirality controlled optoelectronic and spin-based properties. A+ organic sublattice induces chirality into the semiconducting [PbI4]2- inorganic sublattice through non-covalent interactions at organic-inorganic interface. Often, the A+ cations in the lattice have different orientations, leading to asymmetry in the non-covalent interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!