Deguelin and Paclitaxel Loaded PEG-PCL Nano-Micelles for Suppressing the Proliferation and Inducing Apoptosis of Breast Cancer Cells.

Front Biosci (Landmark Ed)

Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, 637000 Nanchong, Sichuan, China.

Published: February 2024

Background: Deguelin (DGL) is a natural flavonoid reported to exhibit antitumor effects in breast cancer (BC). PEG-PCL (Polyethylene Glycol- Polycaprolactone), as polymeric micelles, has biodegradability and biocompatibility. The aim of this study was to investigate whether the nanoparticular delivery system, PEG-PCL could improve the bioavailability of DGL for suppressing proliferation of BC cells.

Methods: PEG-PCL polymers were first prepared by ring-opening polymerization, and DGL and paclitaxel (PTX)-loaded PEG-PCL nano-micelles were formulated via the film dispersion method. The composition and molecular weight of PEG-PCL were analyzed by nuclear magnetic resonance and fourier Transform infrared spectroscopy (FTIR) spectra. Particle size, surface potential and hemolytic activity of micelles were assessed by dynamic light scattering, transmission electron microscopy and hemolysis assay, respectively. Then proliferation and apoptosis of MDA-MB-231 and MDA-MB-468 cells were tested with Edu staining, CCK-8, TUNEL staining, and Flow cytometer. Caspase 3 expression was also assessed by Western blot.

Results: Our results first indicated that PEG2000-PCL2000 was successfully synthesized. DGL and PTX-loaded PEG-PCL nano-micelles were rounded in shape with a particle size of 35.78 ± 0.35 nm and a surface potential of 2.84 ± 0.27 mV. The micelles had minimal hemolytic activity. Besides, we proved that DGL and PTX-loaded PEG-PCL nano-micelles could suppress proliferation and induce apoptosis in BC cells. The DGL and PTX-loaded PEG-PCL nano-micelles constructed in this study had a prominent inhibitory role on proliferation and a remarkable promotional role on apoptosis in BC cells.

Conclusions: This study proposes that nano-micelles formed by PEG-PCL can enhance the cytotoxicity of Paclitaxel against breast cancer cells, and concurrently, the loading of Deguelin may further inhibit cell proliferation. This presents a potential for the development of a novel therapeutic strategy.

Download full-text PDF

Source
http://dx.doi.org/10.31083/j.fbl2902090DOI Listing

Publication Analysis

Top Keywords

peg-pcl nano-micelles
20
ptx-loaded peg-pcl
16
breast cancer
12
dgl ptx-loaded
12
peg-pcl
10
suppressing proliferation
8
cancer cells
8
particle size
8
surface potential
8
hemolytic activity
8

Similar Publications

Deguelin and Paclitaxel Loaded PEG-PCL Nano-Micelles for Suppressing the Proliferation and Inducing Apoptosis of Breast Cancer Cells.

Front Biosci (Landmark Ed)

February 2024

Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, 637000 Nanchong, Sichuan, China.

Background: Deguelin (DGL) is a natural flavonoid reported to exhibit antitumor effects in breast cancer (BC). PEG-PCL (Polyethylene Glycol- Polycaprolactone), as polymeric micelles, has biodegradability and biocompatibility. The aim of this study was to investigate whether the nanoparticular delivery system, PEG-PCL could improve the bioavailability of DGL for suppressing proliferation of BC cells.

View Article and Find Full Text PDF

Biocompatible perovskite quantum dots with superior water resistance enable long-term monitoring of the HS level .

Nanoscale

September 2021

Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.

The application of perovskite quantum dots (PQDs) in biomedical fields such as bioimaging and biosensing has been limited owing to their instability in the physiological environment. Herein, PQDs are innovatively encapsulated into nano-micelles composed of a polyethylene glycol-polycaprolactone (PEG-PCL) block copolymer, which allows the preparation of biocompatible PQDs (bio-PQDs) with excellent water resistance. Due to the benefits of extraordinary water resistance and biocompatibility, these bio-PQDs are capable of real-time and long-term quantitatively monitoring the HS level in living cells as well as in zebrafish.

View Article and Find Full Text PDF

We previously developed a nose-to-brain delivery system using poly(ethylene glycol)-polycaprolactone block polymeric micelles modified by a cell-penetrating peptide, Tat (PEG-PCL-Tat). This system showed excellent delivery of the anti-cancer drug camptothecin to the brain and improved therapeutic efficacy in a brain tumor model. However, improvements are necessary to selectively deliver drugs to tumor sites once they enter the brain, and avoid toxic side effects to normal brain tissue.

View Article and Find Full Text PDF

Controlling metastasis is an important strategy in cancer treatment. Nanotechnology and nucleic acids with novel modalities are promising regulators of cancer metastasis. We aimed to develop a small interfering RNA (siRNA) systemic delivery and anti-metastasis system using nanotechnology.

View Article and Find Full Text PDF

Delivery luteolin with folacin-modified nanoparticle for glioma therapy.

Int J Nanomedicine

November 2019

Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China.

Background: Glioblastoma mutliforme is the most common and has the poorest prognosis of any malignant tumor of the central nervous system. Luteolin, the most abundant xanthone extracted from vegetables and medicinal plants, has been shown to have treatment effects in various cancer cell types. Luteolin is however, hydrophobic and has poor biocompatibility, which leads to low bioavailability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!