Human arm redundancy: a new approach for the inverse kinematics problem.

R Soc Open Sci

Motor Control for Humans and Robotic Systems Laboratory, Weizmann Institute of Science, Rehovot, Central, Israel.

Published: February 2024

The inverse kinematics (IK) problem addresses how both humans and robotic systems coordinate movement to resolve redundancy, as in the case of arm reaching where more degrees of freedom are available at the joint versus hand level. This work focuses on which coordinate frames best represent human movements, enabling the motor system to solve the IK problem in the presence of kinematic redundancies. We used a multi-dimensional sparse source separation method to derive sets of basis (or source) functions for both the task and joint spaces, with joint space represented by either absolute or anatomical joint angles. We assessed the similarities between joint and task sources in each of these joint representations, finding that the time-dependent profiles of the absolute reference frame's sources show greater similarity to corresponding sources in the task space. This result was found to be statistically significant. Our analysis suggests that the nervous system represents multi-joint arm movements using a limited number of basis functions, allowing for simple transformations between task and joint spaces. Additionally, joint space seems to be represented in an absolute reference frame to simplify the IK transformations, given redundancies. Further studies will assess this finding's generalizability and implications for neural control of movement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898979PMC
http://dx.doi.org/10.1098/rsos.231036DOI Listing

Publication Analysis

Top Keywords

inverse kinematics
8
kinematics problem
8
joint
8
task joint
8
joint spaces
8
joint space
8
space represented
8
represented absolute
8
absolute reference
8
human arm
4

Similar Publications

Introduction: Knee alignment significantly impacts the outcome of total knee arthroplasty (TKA). Understanding patient perceptions of their knee alignment in relation to objective measurements is essential to ensure optimal surgical outcomes and to meet patients' expectations. This study reports patients' perception of pre- and postoperative knee alignment in relation to radiographic alignment measurements.

View Article and Find Full Text PDF

Steam Generator Maintenance Robot Design and Obstacle Avoidance Path Planning.

Sensors (Basel)

January 2025

College of Resource Environmental and Safety Engineering, University of South China, Hengyang 421001, China.

To solve the issue of inconvenient and dangerous manual operation during the installation and removal of the main pipe plugging plate in the steam generator in nuclear power plants, a ten-degree-of-freedom plugging robot was designed in the present study that includes a collaborative robotic arm coupled with a servo electric cylinder. By establishing a joint coordinate system for the robot model, a D-H parameter model for the plate plugging robot was established, and the forward and inverse kinematics were solved. The volume level approximate convex decomposition algorithm was used to fit the steam generator model with a convex packet, and an experimental simulation platform was constructed.

View Article and Find Full Text PDF

Conjugate Gradient (CG) methods are widely used for solving large-scale nonlinear systems of equations arising in various real-life applications due to their efficiency in employing vector operations. However, the global convergence analysis of CG methods remains a significant challenge. In response, this study proposes scaled versions of CG parameters based on the renowned Barzilai-Borwein approach for solving convex-constrained monotone nonlinear equations.

View Article and Find Full Text PDF

Introduction: In 2020, 368 million people globally were affected by knee osteoarthritis, and prevalence is projected to increase with 74% by 2050. Relatively high rates of dissatisfactory results after total knee arthroplasty (TKA), as reported by approximately 20% of patients, may be caused by sub-optimal knee alignment and balancing. While mechanical alignment has traditionally been the goal, patient-specific alignment strategies are gaining interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!