Accurate estimation of the reference evapotranspiration (ET) is crucial for determining crop water requirements. However, the lack of appropriate weather stations representing croplands, particularly in drylands, may adversely influence the accuracy of ET estimates. To overcome this issue, a promising approach is to use meteorological stations in cropland areas to collect weather data that are representative of actual conditions. However, the number of agrometeorological stations in these areas is limited. Therefore, this study aims to assess the effectiveness of three datasets, including ERA5 and ERA5-Land, and WaPOR (Water Productivity Open-access portal), for estimating ET in cropland areas on a basin scale. The land use/land cover (LULC) of the European Space Agency (ESA) was used to identify the sites resembling agrometeorological stations. Data were collected from 2009 to 2022, and the FAO-Penman-Monteith method was used to estimate daily and monthly ET. The accuracy and reliability of ET estimates with the three datasets were evaluated by comparing them with ET estimated by ground measurements. Statistical analysis metrics, normalized root mean squared error (nRMSE), and relative mean bias error (rMBE) were used to assess the performance of the datasets. This study highlights that ERA5 exhibited superior overall performance compared to other datasets in estimating ET. However, WaPOR performed better at high-altitude stations with inhomogeneous topography than ECMWF reanalysis (i.e., ERA5 and ERA5-L). Thus, none of the datasets could provide accurate ET estimates for all the stations within the basin. Therefore, applying the best-performing data source yielded better results than using a single dataset. These findings are valuable for improving irrigation scheduling and water management practices on a large scale, particularly in regions facing data scarcity challenges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901012 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e26531 | DOI Listing |
Environ Monit Assess
January 2025
School of Energy and Power Engineering, Xihua University, No. 9999 Hongguang Street, Chengdu, 610039, Sichuan Province, China.
Analysis of crop water requirement and its influencing factors are important for optimal allocation of water resources. However, research on variations of climatic factors and their contribution to wheat water requirement in Xinjiang is insufficient. In our study, daily meteorological data during 1961‒2017 in Xinjiang was collected.
View Article and Find Full Text PDFSci Rep
January 2025
Vale Institute of Technology, Sustainable Development, Belém, Pará, Brazil.
Ecosystem services provided by terrestrial biomes, such as moisture recycling and carbon assimilation, are crucial components of the water, energy, and biogeochemical cycles. These biophysical processes are influenced by climate variability driven by distant ocean-atmosphere interactions, commonly referred to as teleconnections. This study aims to identify which teleconnections most significantly affect key biophysical processes in South America's two largest biomes: The Amazon and Cerrado.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
Drought induced by climate change poses a serious threat to human health. The gut microbiome also plays a critical role in human health. However, no studies have explored the effect of drought on the human gut microbiome.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, PR China. Electronic address:
As water demand continues to grow, water resource management that only restricts water withdrawal can no longer ensure sustainable water use, especially in region with intensive human activities. In the water cycle of precipitation, runoff and evapotranspiration at the basin scale, only water evapotranspiration is the actual consumption of water. Water resource management that aims to control the total consumption within a basin is referred to as "real water saving," which can prevent the depletion of water resources.
View Article and Find Full Text PDFPLoS One
December 2024
São Paulo State University (Unesp), School of Sciences and Engineering, Tupã, São Paulo, Brasil.
Meteorological data acquired with precision, quality, and reliability are crucial in various agronomy fields, especially in studies related to reference evapotranspiration (ETo). ETo plays a fundamental role in the hydrological cycle, irrigation system planning and management, water demand modeling, water stress monitoring, water balance estimation, as well as in hydrological and environmental studies. However, temporal records often encounter issues such as missing measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!