Climate change has the potential to influence plant development, physiology, and distribution. Arecanut ( L.), with its long life span of 60-70 years, thrives in a tropical habitat remains exposed to various abiotic and biotic factors. It is pertinent to comprehend the adaptation strategies of this crop towards climate change over time. The Biomod2 ensemble platform for species distribution modeling was utilized to predict the potential impact of climate change on the adaptability of the crop. The extracted study region of India was used for prediction, and the final run of 6 models ensemble includes 894 occurrence points and 9 climate variables with 80%-20% of training and validation sets. The model's outputs had area under curve (AUC) values of 0.943 and true skills statistics (TSS) of 0.741, which are regarded as accurate. The research area was categorized into five groups: very high, high, moderate, low, and very low. The examination involved assessing the shift in each category from the present to two prospective scenarios (shared socio-economic pathways; SSP 2-4.5 and SSP 5-8.5) projected for the 2050s and 2070s. A shift in the climate suitability area from 'very high' and 'high' categories to 'moderate' or 'very low' categories was observed suggesting the need for adaptive strategies to sustain the current yield levels. Amongst the regions, Karnataka state, which at present has more than 50% area under cultivation, is highly vulnerable and more area is coming under 'very low' and 'low' categories from eastern side. Meanwhile, in north eastern part of the country a shift in high suitable region from northwest to southwest is observed. Overall, the model prediction suggests that some parts of west and south interior regions of the country warrant immediate consideration in order to adapt to future climate change, whereas some part of north east can be considered for future cultivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901027PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e26382DOI Listing

Publication Analysis

Top Keywords

climate change
16
future climate
8
climate suitability
8
'very low'
8
climate
7
area
5
predicting current
4
current future
4
suitability arecanut
4
arecanut india
4

Similar Publications

Assessing Changes in Permethrin Toxicity to Juvenile Inland Silversides (Menidia beryllina) Under Different Temperature Scenarios.

Arch Environ Contam Toxicol

January 2025

Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.

Aquatic systems are impacted by temperature fluctuations which can alter the toxicity of pesticides. Increased temperatures related to climate change have elevated pest activity, resulting in an escalation of pesticide use. One such pesticide class, pyrethroids, has replaced the use of several banned pesticides due to its low mammalian toxicity.

View Article and Find Full Text PDF

Climate change poses a significant threat to human health. Long-term climate effects on childhood asthma hospitalizations depend on the population's geographic region. These effects in tropical drylands are not well understood.

View Article and Find Full Text PDF

Characterising patterns of genetic diversity including evidence of local adaptation is relevant for predicting and managing species recovering from overexploitation in the face of climate change. Red abalone (Haliotis rufescens) is a species of conservation concern due to recent declines from overharvesting, disease and climate change, resulting in the closure of commercial and recreational fisheries. Using whole-genome resequencing data from 23 populations spanning their entire range (southern Oregon, USA, to Baja California, MEX) we investigated patterns of population connectivity and genotype-environment associations that would reveal local adaptation across the mosaic of coastal environments that define the California Current System (CCS).

View Article and Find Full Text PDF

Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.

View Article and Find Full Text PDF

Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.

Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!