Molecular subtype identification and prognosis stratification based on lysosome-related genes in breast cancer.

Heliyon

General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China.

Published: February 2024

Background: Lysosomes are known to have a significant impact on the development and recurrence of breast cancer. However, the association between lysosome-related genes (LRGs) and breast cancer remains unclear. This study aims to explore the potential role of LRGs in predicting the prognosis and treatment response of breast cancer.

Methods: Breast cancer gene expression profile data and clinical information were downloaded from TCGA and GEO databases, and prognosis-related LRGs were screened for consensus clustering analysis. Lasso Cox regression analysis was used to construct risk features derived from LRGs, and immune cell infiltration, immune therapy response, drug sensitivity, and clinical pathological feature differences were evaluated for different molecular subtypes and risk groups. A nomogram based on risk features derived from LRGs was constructed and evaluated.

Results: Our study identified 176 differentially expressed LRGs that are associated with breast cancer prognosis. Based on these genes, we divided breast cancer into two molecular subtypes with significant prognostic differences. We also found significant differences in immune cell infiltration between these subtypes. Furthermore, we constructed a prognostic risk model consisting of 7 LRGs, which effectively divides breast cancer patients into high-risk and low-risk groups. Patients in the low-risk group have better prognostic characteristics, respond better to immunotherapy, and have lower sensitivity to chemotherapy drugs, indicating that the low-risk group is more likely to benefit from immunotherapy and chemotherapy. Additionally, the risk score based on LRGs is significantly correlated with immune cell infiltration, including CD8 T cells and macrophages. This risk score model, along with age, chemotherapy, clinical stage, and N stage, is an independent prognostic factor for breast cancer. Finally, the nomogram composed of these factors has excellent performance in predicting overall survival of breast cancer.

Conclusions: In conclusion, this study has constructed a novel LRG-derived breast cancer risk feature, which performs well in prognostic prediction when combined with clinical pathological features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900431PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e25643DOI Listing

Publication Analysis

Top Keywords

breast cancer
36
immune cell
12
cell infiltration
12
breast
11
cancer
9
lysosome-related genes
8
lrgs
8
risk features
8
features derived
8
derived lrgs
8

Similar Publications

Gene Polymorphisms in Greek Primary Breast Cancer Patients.

Front Biosci (Schol Ed)

December 2024

Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia.

Background: Breast cancer is a heterogeneous disease with distinct clinical subtypes, categorized by hormone receptor status, which exhibits different prognoses and requires personalized treatment approaches. These subtypes included luminal A and luminal B, which have different prognoses. Breast cancer development and progression involve many factors, including interferon-gamma ().

View Article and Find Full Text PDF

Objective: The current study aimed to develop an experimental approach for the direct co-culture of three-dimensional breast cancer cells using single-cell RNA sequencing (scRNA-seq).

Methods: The following four cell culture groups were established in the Matrigel matrix: the untreated Michigan Cancer Foundation (MCF)-7 cell culture group, the MCF-7 cell culture plus cisplatin group, the untreated co-culture group, and the cell co-culture plus cisplatin group. For cell co-culture, MCF-7 cells, human mammary fibroblasts, and human umbilical vein endothelial cells were mixed at a ratio of 1:1:1.

View Article and Find Full Text PDF

Clinical Relevance and Drug Modulation of PPAR Signaling Pathway in Triple-Negative Breast Cancer: A Comprehensive Analysis.

PPAR Res

December 2024

Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China.

Triple-negative breast cancer (TNBC) is highly heterogeneous and poses a significant medical challenge due to limited treatment options and poor outcomes. Peroxisome proliferator-activated receptors (PPARs) play a crucial role in regulating metabolism and cell fate. While the association between PPAR signal and human cancers has been a topic of concern, its specific relationship with TNBC remains unclear.

View Article and Find Full Text PDF

Previous studies have demonstrated that many healthcare workers in low- and middle-income countries (LMICs) lack the appropriate training and knowledge to recognize and diagnose breast cancer at an early stage. As a result, women in LMICs are frequently diagnosed with late-stage breast cancer (Stage III/IV) with a poor prognosis. We hosted a 1-day breast cancer educational conference directed towards healthcare workers in Honduras.

View Article and Find Full Text PDF

Deep learning identification of novel autophagic protein-protein interactions and experimental validation of Beclin 2-Ubiquilin 1 axis in triple-negative breast cancer.

Oncol Res

December 2024

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Background: Triple-negative breast cancer (TNBC), characterized by its lack of traditional hormone receptors and HER2, presents a significant challenge in oncology due to its poor response to conventional therapies. Autophagy is an important process for maintaining cellular homeostasis, and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors. In contrast to targeting protein activity, intervention with protein-protein interaction (PPI) can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!