Rational Formulation of targeted ABT-737 nanoparticles by self-assembled polypeptides and designed peptides.

Heliyon

Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.

Published: February 2024

Here we present the development of nanoparticles (NPs) formulations specifically designed for targeting the antiapoptotic Bcl-2 proteins on the outer membrane of mitochondria with the drug agent ABT-737. The NPs which are self-assembled by the natural polypeptide poly gamma glutamic acid (ϒPGA) and a designed cationic and amphiphilic peptide (PFK) have been shown to target drugs toward mitochondria. In this study we systematically developed the formulation of such NPs loaded with the ABT-737 and demonstrated the cytotoxic effect of the best identified formulation on MDA-MB-231 cells. Our findings emphasize the critical role of solutions pH and the charged state of the components throughout the formulation process as well as the concentrations of the co-components and their mixing sequence, in achieving the most stable and effective cytotoxic formulation. Our study highlights the potential versatility of designed peptides in combination with biopolymers for improving drug delivery formulations and enhance their targeting abilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900936PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e26095DOI Listing

Publication Analysis

Top Keywords

designed peptides
8
rational formulation
4
formulation targeted
4
targeted abt-737
4
abt-737 nanoparticles
4
nanoparticles self-assembled
4
self-assembled polypeptides
4
designed
4
polypeptides designed
4
peptides development
4

Similar Publications

Pharmacologic Management of Heart Failure with Preserved Ejection Fraction (HFpEF) in Older Adults.

Drugs Aging

January 2025

Program for the Care and Study of the Aging Heart, Department of Medicine, Weill Cornell Medicine, 420 East 70th St, New York, NY, LH-36510063, USA.

There are several pharmacologic agents that have been touted as guideline-directed medical therapy for heart failure with preserved ejection fraction (HFpEF). However, it is important to recognize that older adults with HFpEF also contend with an increased risk for adverse effects from medications due to age-related changes in pharmacokinetics and pharmacodynamics of medications, as well as the concurrence of geriatric conditions such as polypharmacy and frailty. With this review, we discuss the underlying evidence for the benefits of various treatments in HFpEF and incorporate key considerations for older adults, a subpopulation that may be at higher risk for adverse drug events.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Background: Aerobic vaginitis (AV) is a state of abnormal vaginal microbiota, which is associated with increased numbers of aerobic, enteric bacteria and inflammation of the vaginal epithelium. Anti-microbial treatment combined with anti-inflammatory therapy could be useful in the treatment of this condition. It is known that calcitriol, the active form of vitamin D, plays an important role in modulating the immune response in several inflammatory diseases.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptides (AMPs) and virtually modifies peptide sequences to produce more potent AMPs, akin to in silico directed evolution. We applied this model to peptides encoded in low-abundance human oral bacteria, resulting in the virtual evolution of 32 peptides into potent AMPs.

View Article and Find Full Text PDF

Recent developments in mass spectrometry-based proteomics have established it as a robust tool for system-wide analyses essential for pathophysiological research. While post-mortem samples are a critical source for these studies, our understanding of how body decomposition influences the proteome remains limited. Here, we have revisited published data and conducted a clinically relevant time-course experiment in mice, revealing organ-specific proteome regulation after death, with only a fraction of these changes linked to protein autolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!