Research on the spatial distribution of sensitivity of time-domain near infrared diffuse reflectance measurement is reported in this paper. The main objective of the investigation is to validate theoretically calculated sensitivity profiles for a measurement geometry with two detectors and two sources in which sensitivity profiles of statistical moments of distributions of time of flight of photons (DTOFs) are spatially restricted to a region underneath the detectors. For this dual subtraction method, smaller sensitivities to changes appearing in the superficial layer of the medium were observed compared to the single distance and single subtraction methods. Experimental validation of this approach is based on evaluation of changes in the statistical moments of DTOFs measured on a liquid phantom with local absorption perturbations. The spatial distributions of sensitivities, depth-related sensitivity and depth selectivities were obtained from the dual subtraction method and compared with those from single distance and single subtraction approaches. Also, the contrast to noise ratio (CNR) was calculated for the dual subtraction technique and combined with depth selectivity in order to assess the overall performance (product of CNR and depth selectivity) of the method. Spatial sensitivity profiles from phantom experiments are in a good agreement with the results of theoretical studies and feature more locally restricted sensitivity volume with the point of maximal sensitivity located deeper. The highest value of overall performance was obtained experimentally for the second statistical moment in the dual subtraction method (∼10.8) surpassing that of the single distance method (∼8.7). This confirms the advantage of dual subtraction measurement geometries in the suppression of optical signals originated in the superficial layer of the medium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898577PMC
http://dx.doi.org/10.1364/BOE.497671DOI Listing

Publication Analysis

Top Keywords

dual subtraction
24
sensitivity profiles
12
subtraction method
12
single distance
12
diffuse reflectance
8
subtraction
8
subtraction technique
8
statistical moments
8
superficial layer
8
layer medium
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!